基于特征的时间序列聚类方法研究进展
Research Progress in Time Series Clustering Methods Based on Characteristics
查看参考文献48篇
文摘
|
时间序列聚类可以根据相似性将对象集分为不同的组,从而反映出同组对象的相似性特征和不同组对象之间的差异特征。当序列维度较高时,传统的时间序列聚类方法容易受噪声影响,难以定义合适的相似性度量,聚类结果往往意义不明确。当数据有缺失或不等长时,聚类方法也难以实施。基于上述问题,一些学者提出了基于特征的时间序列聚类方法,不仅可以解决上述问题,还可以发现序列本质特征的相似性。本文根据时间序列的不同特征,综述了基于特征的时间序列聚类方法的研究进展,并进行了分析和评述;最后对未来研究进行了展望。 |
其他语种文摘
|
As terabyte time series data pour into the world, more and more attentions have been paid to the technique of analyzing this data. To understand discrepancy between these data, time series clustering methods have been used to divide them into different groups by similarities. Due to high dimension of time series, the traditional clustering methods for static data is not valid for time series clustering problem when they are susceptible to noise, and can hardly define suitable similarity which are prone to a meaningless result. It is also vexatious for many other methods to solve the clustering problem with missing or unequal data. Time series clustering methods based on characteristics could deal with these problems and discover the essential similarities of time series in all directions. According to characteristics of time series, this paper aimed to review the research progress of characteristics-based clustering methods for time series. Firstly, we introduced the definition and classified the different characteristics of time series. Then we reviewed different time series clustering methods based on characteristics and summarized the generality of each method. Finally we discussed some deficiencies of existing methods, and predicted the future of the relative research. |
来源
|
地理科学进展
,2012,31(10):1307-1317 【核心库】
|
关键词
|
时间序列
;
时间序列特征
;
数据挖掘
;
聚类
|
地址
|
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
|
语种
|
中文 |
ISSN
|
1007-6301 |
学科
|
数学 |
基金
|
中国科学院知识创新工程重要方向项目
;
中国科学院地理资源所自主部署创新项目
;
国家863计划
|
文献收藏号
|
CSCD:4689785
|
参考文献 共
48
共3页
|
1.
Shumway R H.
Time Series Analysis and Its Applications with R Examples,2009
|
CSCD被引
2
次
|
|
|
|
2.
Han J W.
Data Mining: Concepts and techniques,2006
|
CSCD被引
17
次
|
|
|
|
3.
Kosmelj K. Cross-sectional approach for clustering time varying data.
Journal of Classification,1990,7:99-109
|
CSCD被引
5
次
|
|
|
|
4.
Balasubramaniyan R. Clustering of gene expression data using a local shape-based similarity measure.
Bioinformatics,2005,21(7):1069-1077
|
CSCD被引
4
次
|
|
|
|
5.
Liao T W. Clustering of time series data: A survey.
Pattern Recognition,2005,38(11):1857-1874
|
CSCD被引
48
次
|
|
|
|
6.
Diaz S P. Comparing several parametric and nonparametric approaches to time series clustering: A simulation study.
Journal of Classification,2010,27(3):333-362
|
CSCD被引
3
次
|
|
|
|
7.
Keogh E J. An enhanced representation of time series which allows fast and accurate classification, Clustering and Relevance Feedback.
Procs. of the 4th Conference on Knowledge Discovery in Databases,1998:239-241
|
CSCD被引
2
次
|
|
|
|
8.
Chen Y G. SpADe: On shape-based pattern detection in streaming time series.
Proceedings of the 23rd International Conference on Data Engineering,2007:786-795
|
CSCD被引
1
次
|
|
|
|
9.
Wang X Z. Characteristic-based clustering for time series data.
Data Mining and Knowledge Discovery,2006,13(3):335-364
|
CSCD被引
8
次
|
|
|
|
10.
Rose O.
Estimation of the Hurst Parameter of Long-Range Dependent Time Series. Research Report,1996
|
CSCD被引
2
次
|
|
|
|
11.
Hilborn R C. Chaos and nonlinear dynamics: An introduction for scientists and engineers.
AIChE Journal,1995,41(7):1831-1832
|
CSCD被引
1
次
|
|
|
|
12.
Tian Z. BIRCH: An efficient data clustering method for very large databases.
SIGMOD Rec,1996,25(2):103-114
|
CSCD被引
2
次
|
|
|
|
13.
Karypis G. Chameleon: Hierarchical clustering using dynamic modeling.
IEEE Computer,1999,32(8):68-75
|
CSCD被引
219
次
|
|
|
|
14.
Ankerst M. OPTICS: Ordering points to identify the clustering structure.
SIGMOD Rec,1999,28(2):49-60
|
CSCD被引
77
次
|
|
|
|
15.
Wang W. STING: A statistical information grid approach to spatial data mining.
Proceedings of the 23rd Conference on VLDB,1997:186-195
|
CSCD被引
7
次
|
|
|
|
16.
Biernacki C. Assessing a mixture model for clustering with the integrated completed likelihood.
IEEE Trans,2000,22(7):719-725
|
CSCD被引
11
次
|
|
|
|
17.
Keogh E. Exact indexing of dynamic time warping.
Knowledge and Information Systems,2005,7(3):358-386
|
CSCD被引
106
次
|
|
|
|
18.
Moller-Levet C S. Clustering of unevenly sampled gene expression time-series data.
Fuzzy Sets and Systems,2005,152(1):49-66
|
CSCD被引
1
次
|
|
|
|
19.
Moller-Levet C S. Fuzzy clustering of short time-series and unevenly distributed sampling points.
Proceedings of the 5th International Symposium on Intelligent Data Analysis,2003
|
CSCD被引
2
次
|
|
|
|
20.
Fu T C. Pattern discovery from stock time series using self-organizing maps.
KDD 2001 Workshop on Temporal Data Mining,2001:27-37
|
CSCD被引
1
次
|
|
|
|
|