高速列车受电弓非定常气动特性研究
Unsteady Aerodynamic Characteristics of High-speed Pantograph
查看参考文献15篇
文摘
|
受电弓系统的受流特性对高速列车的安全运行至关重要,受电弓的非定常气动特性严重影响受电弓系统的受流状态。本文采用脱体涡模拟(DES),对高速列车受电弓的非定常气动特性进行深入研究。研究表明:受电弓脱体涡的强度、脱落频率对受电弓气动升力系数影响很大。无横风条件下,受电弓受到的升力为负升力,列车运行速度为350 km/h时,其升力的波动幅度达110%,速度增加,其波动幅度增大,频率增大,受电弓的横向受力很小;横风条件下,受电弓的升力振动频率与无横风时有很大不同,升力系数变化不大,侧向力随横风速度的增大而增大。研究结果为高速受电弓的优化设计提供了依据。 |
其他语种文摘
|
The current collection performance of pantograph is critical to safe operation of high-speed trains. The unsteady aerodynamic characteristics of pantograph influence the status of current collection of the pantograph system severely. In this paper, unsteady aerodynamic characteristics of high-speed train pantograph were studied with detached eddy simulation (DES). The research results indicate as follows: The aerodynamic lift coefficient of pantograph was strongly affected by the strength and shedding frequency of the detached eddy; when without the cross wind,the lift of pantograph is negative, and when the train runs at the speed of 350 km/h, the fluctuating amplitude of the lift is 110%, and the fluctuating amplitude and frequency of pantograph increases with further speed raising and the side force applied on the pantograph remains very small; when with the cross wind, the vibration frequency of the pantograph lift differs from that in absence of the cross wind greatly whereas the lift coefficient changes little, and the side force applied on the pantograph increases as the cross wind speed increases. The results are helpful to optimized design of high-speed pantographs. |
来源
|
铁道学报
,2012,34(11):16-21 【核心库】
|
DOI
|
10.3969/j.issn.1001-8360.2012.11.003
|
关键词
|
受电弓
;
升力系数
;
脱体涡模拟
;
振动
|
地址
|
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
ISSN
|
1001-8360 |
学科
|
铁路运输 |
基金
|
国家科技支撑计划项目
;
国家重点基础研究发展计划(973计划)
|
文献收藏号
|
CSCD:4678232
|
参考文献 共
15
共1页
|
1.
钱立新. 574.8 km/h世界高速列车速度新记录的启示.
铁道技术监督,2007,35(5):1-3
|
CSCD被引
2
次
|
|
|
|
2.
杨桢. 基于空气动力学的受电弓高速受流研究.
电气化铁道,2009,20(3):17-20
|
CSCD被引
6
次
|
|
|
|
3.
宋洪磊. 空气动力作用对高速受电弓受流特性影响研究.
电气化铁道,2010,21(1):28-32
|
CSCD被引
7
次
|
|
|
|
4.
蔡国华. 高速列车受电弓低速风洞试验技术.
铁道工程学报,2006,23(7):67-70
|
CSCD被引
10
次
|
|
|
|
5.
Sung-II Seo. A Study on the Measurement of Contact Force of Pantograph on High Speed Train.
Journal of Mechanical Science and Technology,2006,20(10):1548-1556
|
CSCD被引
5
次
|
|
|
|
6.
Ikeda Mitsuru. A Flow Control Technique Utilizing Air Blowing to Modify the Aerodynamic Characteristics of Pantograph for High-speed Train.
Journal of Mechanical Systems for Transportation and Logistics,2008,1(3):264-271
|
CSCD被引
9
次
|
|
|
|
7.
Langtry R. Detached-eddy Simulation of a Nose Landing-gear Cavity.
IUTAM Symposium on Unsteady Separated Flows and Their Control,2009:357-366
|
CSCD被引
1
次
|
|
|
|
8.
Mendonca F.
Towards Understanding LES and DES for Industria Aeroacoustic Predictions,2011
|
CSCD被引
1
次
|
|
|
|
9.
Maddox S.
Detached-eddy Simulation of the Ground Transportation system,2011
|
CSCD被引
1
次
|
|
|
|
10.
Kapadia S.
Detached-eddy Simulation over a Reference Ahmed Car Model,2003
|
CSCD被引
1
次
|
|
|
|
11.
Sreenivas K.
Aerodynamic Simulation of Heavy Trucks with Rotating Wheels,2006
|
CSCD被引
1
次
|
|
|
|
12.
Wilson R. Detached Eddy Simulation of a Surface Mounted Cube High Reynolds Number.
Proceedings of ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting,2006:1213-1222
|
CSCD被引
1
次
|
|
|
|
13.
Forsythe J.
Six Degree of Freedom Computation of the F-15E Entering a Spin,2006
|
CSCD被引
1
次
|
|
|
|
14.
阎超.
计算流体力学方法及应用,2006
|
CSCD被引
140
次
|
|
|
|
15.
Jeong J. On the Identification of Vortex.
Journal of Fluid Mechanics,1995,285(2):69-94
|
CSCD被引
289
次
|
|
|
|
|