锰掺杂硫化锌量子点室温磷光检测铅离子
Determination of Lead Ion Based on Quenching of Room Temperature Phosphorescence of Mn-doped ZnS Quantum Dots
查看参考文献16篇
文摘
|
采用锰掺杂硫化锌量子点室温磷光(RTP)探针,基于Pb~(2+)对其磷光的猝灭现象进行选择性测定,考察了量子点溶液浓度、缓冲液体系及浓度、反应时间、干扰物质等多种因素影响,在最优条件下,即25μmol/L量子点溶液在Tris-HCl(10 mmol/L,pH 7.4)缓冲液中,反应时间为2 min时,检测Pb~(2+)的线性范围为0.25~1000 μmol/L,检出限为0.04 μmol/L,方法的精密度和准确度良好。本方法简单、快速、灵敏度和选择性较好,线性范围较宽,可用于96孔板进行高通量检测,并成功应用于生物样品中Pb~(2+)的选择性检测,在稀释5倍人血浆中检测Pb~(2+)的线性范围为5~1000 μmol/L,检出限为0.48 μmol/L。 |
其他语种文摘
|
Room temperature phosphorescence (RTP) property of Mn-doped ZnS quantum dots (QDs) was explored to develop a novel method for selective detection of lead cation. The influence factors such as buffer kinds and their concentration, the concentration of Mn-doped ZnS QDs solution, reaction time and coexisting substances were studied. It was found that under optimized conditions, i.e. 10 mmol/L Tris-HCl buffer at pH 7.4 and 2 min reaction time, the relative RTP intensity of the Mn-doped ZnS QDs was quenched linearly by lead cation in the concentration range from 0.25 to 1000μmol/L, and the limit of detection was 0.04 μmol/L (8.3 μg Pb/L). This method was also applied to measure lead cation in biosamples using a high-throughput 96 well plate with a wide linear range, simpleness, rapidness, high sensitivity and selectivity, and cost effectiveness. The RTP was quenched linearly by lead cation in human plasma in the concentration range from 5 to 1000 μmol/L, and the limit of detection was 0.48 μmol/L (Pb 99 μg/L), respectively. |
来源
|
分析化学
,2012,40(11):1680-1685 【核心库】
|
关键词
|
量子点
;
锰掺杂硫化锌
;
磷光
;
铅离子
|
地址
|
1.
军事医学科学院毒物药物研究所, 北京, 100850
2.
沈阳药科大学药学院, 沈阳, 110016
|
语种
|
中文 |
ISSN
|
0253-3820 |
学科
|
化学 |
基金
|
国家重大科技专项
|
文献收藏号
|
CSCD:4675836
|
参考文献 共
16
共1页
|
1.
Lan G.
Mater. Chem,2007,17(25):2661-2666
|
CSCD被引
1
次
|
|
|
|
2.
Liu W.
J. Biosci. Bioeng,2006,102(1):1-7
|
CSCD被引
1
次
|
|
|
|
3.
谢海燕. Ⅱ-Ⅵ型量子点制备及其在生物检测中应用研究进展.
分析化学,2004,32(8):1099-1103
|
CSCD被引
24
次
|
|
|
|
4.
梁佳然. 量子点荧光探针在定量分析中的应用.
化学进展,2008,20(9):1385-1390
|
CSCD被引
14
次
|
|
|
|
5.
Rahul T.
Nano. Lett,2007,7(11):3429-3432
|
CSCD被引
1
次
|
|
|
|
6.
He Y.
Anal. Chem,2008,80(10):3832-3837
|
CSCD被引
40
次
|
|
|
|
7.
He Y.
Chem. Eur. J,2009,15(22):5436-5440
|
CSCD被引
7
次
|
|
|
|
8.
Wang H.
Anal.Chem,2009,81(4):1615-1621
|
CSCD被引
49
次
|
|
|
|
9.
Wang H.
Chem. Eur. J,2010,16(43):12988-12994
|
CSCD被引
1
次
|
|
|
|
10.
Wu P.
Anal.Chem,2010,82(4):1427-1433
|
CSCD被引
28
次
|
|
|
|
11.
Julie L G.
Preventing Lead Poisoning in Young Children,2005
|
CSCD被引
1
次
|
|
|
|
12.
Prpic-Majic D.
Neurotoxicology and Teratology,2000,22(3):347-356
|
CSCD被引
1
次
|
|
|
|
13.
Baranguan M.
Anal. Bioanal. Chem,2002,374(1):115-119
|
CSCD被引
7
次
|
|
|
|
14.
Chen S.
Anal. Chim. Acta,2002,463(2):177-188
|
CSCD被引
3
次
|
|
|
|
15.
邹爱美. 氢化物发生新体系-原子荧光法同时测定铅和镉.
分析化学,2008,36(2):162-166
|
CSCD被引
13
次
|
|
|
|
16.
Zhuang J.
J. Mater. Chem,2003,13(7):1853-1857
|
CSCD被引
36
次
|
|
|
|
|