极端干旱区不同下垫面土壤凝结水试验研究
Measurements of Soil Condensation Water on Different Types of Underlying Surfaces in Extreme Arid Region
查看参考文献27篇
文摘
|
为了探讨极端干旱区植被生长季的土壤凝结水特征,采用微渗计和中子仪,于2010年6-7月对塔里木河下游地区胡杨林、柽柳丛和裸地3种典型下垫面密封和不密封处理的土壤凝结水的变化特征、形成时间及其影响因素进行了研究。结果表明:微渗计和中子仪观测结果均显示观测期间裸地产生的土壤凝结水总量最大,其次为柽柳丛,而胡杨林形成的土壤凝结水总量最小。观测期间研究区凝结现象从21:00-22:00左右开始,02:00-03:00左右达到第一个峰值前,随着近地表气温和地温的降低,土壤凝结水量呈增加的趋势。不密封处理产生的土壤凝结水量显著大于密封处理的(t<0.01)。柽柳丛土壤日均凝结水量最大,其次为裸地,胡杨林最小。方差分析显示,不同下垫面类型土壤的日均凝结水量之间存在极显著差异(P<0.01)。3种下垫面土壤凝结水量的变化趋势基本一致,均呈双峰曲线。凝结过程一般从22:00左右持续到次日09:00左右。土壤凝结水量主要受气温、大气相对湿度、表层地温、风速以及下垫面等因素的影响。研究结果可以为生态退化区的植被恢复提供一定的理论依据。 |
其他语种文摘
|
Condensation water is an important water source in arid ecosystems.To understand the characteristics of soil condensation water during growing season in extreme arid regions,micro-lysimeters and neutron probe were used to measure the amounts and duration of soil condensation water on different types of underlying surfaces(Populus euphratica forest,Tamarix bushes and bare land) in the lower reaches of the Tarim River.The results showed that the maximum total soil condensation amount occurred on the surface of bare land.The minimum total soil condensation amount was accumulated on the underlying surface of Populus euphratica forest.Soil condensation amounts of the connected treatment were significantly larger than those of the unconnected treatment(t<0.01).The average daily soil condensation amount varied with types of underlying surfaces with the maximum condensation amount occurred on the underlying surface of Tamarix bushes,while the minimum condensation amount was created on the underlying surface of Populus euphratica forest.ANOVA analysis results indicated that the average daily soil condensation amounts on different types of underlying surfaces were significantly different(P<0.01).Diurnal dynamics trend of soil condensation amounts on different types of underlying surfaces showed a clear double-peak curve.Soil condensation water began at 22:00 and ended at 09:00 the next morning.The formation of soil condensation water was mainly affected by atmospheric temperature,relative humidity,soil surface temperature,wind speed and types of underlying surfaces.The results may assist in the calculation of rational ecological water demand and provide scientific supports for ecological restoration in the lower reaches of the Tarim River. |
来源
|
地理科学进展
,2012,31(9):1171-1179 【核心库】
|
关键词
|
干旱区
;
凝结水
;
微渗计
;
中子仪
;
塔里木河
|
地址
|
中国科学院新疆生态与地理研究所, 荒漠与绿洲生态国家重点实验室, 乌鲁木齐, 830011
|
语种
|
中文 |
ISSN
|
1007-6301 |
学科
|
农业基础科学 |
基金
|
国家自然科学基金
;
中国科学院西部之光人才培养计划
;
国家973计划
|
文献收藏号
|
CSCD:4631702
|
参考文献 共
27
共2页
|
1.
蒋瑾. 沙地凝结水及其在水分平衡作用中的研究.
干旱区研究,1993,10(2):1-9
|
CSCD被引
30
次
|
|
|
|
2.
Evenari M. Ecology of the Negev Desert: A critical review of our knowledge.
Developments in Arid Zone Ecology and Environmental Quality,1981:1-33
|
CSCD被引
6
次
|
|
|
|
3.
庄艳丽. 干旱区凝结水研究进展.
地球科学进展,2008,23(1):31-38
|
CSCD被引
28
次
|
|
|
|
4.
Duvdevani S. Dew in Israel and its effect on plants.
Soil Sciences,1964,98(1):14-21
|
CSCD被引
17
次
|
|
|
|
5.
Shachak M. Herbivory in rocks and the weathering of a desert.
Science,1987,236:1098-1099
|
CSCD被引
7
次
|
|
|
|
6.
Jacobs A F G. Dew deposition and drying in a desert system: A simple simulation model.
Journal of Arid Environments,1999,42(3):211-222
|
CSCD被引
26
次
|
|
|
|
7.
Kidron G J. The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel.
Journal of Arid Environments,2002,52(4):517-533
|
CSCD被引
38
次
|
|
|
|
8.
Gutterman Y. Mucilaginous seed coat structure of Carrichtera annua and Anastatica hierochuntica from the Negev Desert highlands of Israel, and its adhesion to the soil crust.
Journal of Arid Environments,1997,35(4):695-705
|
CSCD被引
30
次
|
|
|
|
9.
Li X Y. Effects of gravel and sand mulches on dew deposition in the semiarid region of China.
Journal of Hydrology,2002,260(1/4):151-160
|
CSCD被引
41
次
|
|
|
|
10.
Agam N. Dew formation and water vapor adsorption in semi-arid environments: A review.
Journal of Arid Environments,2006,65(4):572-590
|
CSCD被引
63
次
|
|
|
|
11.
Richards K. Observation and simulation of dew in rural and urban environments.
Progress in Physical Geography,2004,28(1):76-94
|
CSCD被引
29
次
|
|
|
|
12.
Kidron G J. A simple weighing method for dew and fog measurements.
Weather,1998,53(12):428-433
|
CSCD被引
14
次
|
|
|
|
13.
Agam N. Diurnal water content changes in the bare soil of a coastal desert.
Journal of Hydrometeorology,2004,5(5):922-933
|
CSCD被引
13
次
|
|
|
|
14.
Kidron G J. Angle and aspect dependent dew and fog precipitation in the Negev desert.
Journal of Hydrology,2005,301(1/4):66-74
|
CSCD被引
21
次
|
|
|
|
15.
Liu L C. Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, northwest China.
Journal of Hydrology,2006,328(1/2):331-337
|
CSCD被引
42
次
|
|
|
|
16.
王积强. 关于‘土壤凝结水’问题的探讨--与于庆和同志商榷.
干旱区地理,1993,16(2):58-62
|
CSCD被引
15
次
|
|
|
|
17.
孙自永. 新疆罗布泊地区凝结水试验.
地质科技情报,2008,27(2):91-96
|
CSCD被引
19
次
|
|
|
|
18.
张静. 生物结皮影响下沙漠土壤表面凝结水的形成与变化特征.
生态学报,2009,29(12):6600-6608
|
CSCD被引
27
次
|
|
|
|
19.
方静. 荒漠绿洲边缘凝结水量及其影响因子.
冰川冻土,2005,27(5):755-760
|
CSCD被引
30
次
|
|
|
|
20.
郭占荣. 西北干旱地区凝结水试验研究.
水科学进展,2002,13(5):623-628
|
CSCD被引
42
次
|
|
|
|
|