帮助 关于我们

返回检索结果

Histogram-kernel Error and Its Application for Bin Width Selection in Histograms

查看参考文献21篇

文摘 Histogram and kernel estimators are usually regarded as the two main classical data-based non- parametric tools to estimate the underlying density functions for some given data sets. In this paper we will integrate them and define a histogram-kernel error based on the integrated square error between histogram and binned kernel density estimator, and then exploit its asymptotic properties. Just as indicated in this paper, the histogram-kernel error only depends on the choice of bin width and the data for the given prior kernel densities. The asymptotic optimal bin width is derived by minimizing the mean histogram-kernel error. By comparing with Scott’s optimal bin width formula for a histogram, a new method is proposed to construct the data-based histogram without knowledge of the underlying density function. Monte Carlo study is used to verify the usefulness of our method for different kinds of density functions and sample sizes.
来源 Acta Mathematicae Applicatae Sinica-English Series ,2012,28(3):607-624 【核心库】
DOI 10.1007/s10255-007-7081-y
关键词 Histogram ; binned kernel density estimator ; bin width ; histogram-kernel error ; integrated square error
地址

1. Department of Mathematics, Graduate University of Chinese Academy of Sciences, Beijing, 100049  

2. College of Management, Graduate University of Chinese Academy of Sciences, Beijing, 100190

语种 英文
ISSN 0168-9673
学科 数学
基金 国家自然科学基金
文献收藏号 CSCD:4622838

参考文献 共 21 共2页

1.  Beer C F. Simple and effective number-of-bins circumference selectors for a histogram. Statistics and Computing,1999,9:27-35 CSCD被引 2    
2.  Bowman A W. An alternative method of cross-validation for the smoothing of density estimates. Biometrika,1984,71:353-360 CSCD被引 46    
3.  Cencov N N. Estimation of an unknown distribution density from observations. Soviet Math,1962,3:1159-1562 CSCD被引 1    
4.  Daly J E. The construction of optimal histogram. Commun. Statist. Theory Meth,1988,17(9):2921-2931 CSCD被引 2    
5.  Devroye L. The double kernel method in density estimation”. Annales de L’Institut Henri Poincare,1989,25:533-580 CSCD被引 1    
6.  Faraway J J. Bootstrap choice of bandwidth for density estimation. Journal of Statistical Planning and Inference,1990,85:1119-1122 CSCD被引 3    
7.  Freedman D. On the histogram as a density estimation: L2 theory. Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete,1981,57:453-476 CSCD被引 11    
8.  He K. Selecting the number of bins in a histogram: A decision theoretical approach. Journal of Statistical Planning and Inference,1997,61:49-59 CSCD被引 2    
9.  Parzen E. Nonparametric statistical data modeling (with discussion). Journal of the American Statistical Association,1979,74:105-131 CSCD被引 11    
10.  Rosenblatt M. Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics,1956,27:832-837 CSCD被引 143    
11.  Rudemo M. Empirical choice of histogram and kernel density estimators. Scandinavian Journal of Statistics,1982,9:65-78 CSCD被引 21    
12.  Sain S R. On locally adaptive density estimation. Journal of the American Statistical Association,1996,91:1525-1534 CSCD被引 1    
13.  Scott D W. On Optimal and Data-Based Histograms. Biometrika,1979,66:605-610 CSCD被引 30    
14.  Scott D W. Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association,1987,82:1131-1146 CSCD被引 10    
15.  Scott D W. Multivariate density estimation-Theory, practice and visualization,1992 CSCD被引 1    
16.  Simonoff J S. Measuring the stability of histogram appearance when the anchor position is changed. Computational Statistics and Data Analysis,1997,23:335-353 CSCD被引 2    
17.  Sturges H A. The choice of a class interval. Journal of the American Statistical Association,1926,21:65-66 CSCD被引 17    
18.  Taylor C C. Bootstrap choice of the smoothing parameter in kernel density estimation. Biometrika,1989,76:705-712 CSCD被引 2    
19.  Terrell G R. The maximal smoothing principle in density estimation. Journal of the American Statistical Association,1990,85:470-477 CSCD被引 6    
20.  Terrell G R. Over-smoothed nonparamtric density estimates. Journal of the American Statistical Association,1985,80:209-214 CSCD被引 4    
引证文献 2

1 单丽洋 基于差分隐私的非等距直方图发布算法 应用科学学报,2024,42(6):1052-1063
CSCD被引 0 次

2 陈学斌 基于差分隐私的直方图发布方法综述 计算机应用,2024,44(10):3114-3121
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号