面向对象的森林植被图像识别分类方法
Study on Forest Classification Based on Object Oriented Techniques
查看参考文献30篇
文摘
|
森林植被信息提取是遥感影像分类中的难点,仅利用光谱信息难以提取森林植被的类型,本文以门头沟区森林植被占主要土地覆被类型为研究对象,选择HJ-1影像面向对象提取不同地物信息。由于研究区地形复杂,采用多尺度分割方法,对不同地物设置不同分割参数,实现不同地物分层提取。根据光谱、纹理及几何等特征选择合适的特征参数,构建隶属度函数,逐级提取研究区的土地覆被类型,并与传统的最大似然法进行对比。结果表明:面向对象的分类方法在门头沟区森林植被二级信息提取的精度为83%,与传统方法相比有了较大的提高。 |
其他语种文摘
|
Since vegetation is an important indicator of global climate change,then the way to extract vegetation changing data should be put as the top priority.Especially,the extraction of sub-category information of forest vegetation has always been a difficult point in remote sensing image classification.And it is more difficult to extract sub-category information of the forest vegetation type only by taking advantage of the spectral information.As a widely-used method,object-oriented classification has been rapidly developed from the beginning of this century.Object-oriented classification method is mainly used in high-resolution remote sensing imagines,and it is applicable to medium resolution remote sensing images.This paper took Mentougou District,Beijing,which is mainly covered with forest vegetation,as the object of this research,and took HJ-1 image as the main data source then different buildings can be extracted by using the object-oriented classification method.By the reason of complicated terrain in this district,a hierarchical segmentation method was proposed in this research.Then different segmentation parameters could be set according to different buildings.Based on the spectral characteristic of the vegetation,appropriate characteristic parameters could be chosen and subordination function is constructed.After then,land cover types in this district could be extracted step by step and at the same time could be compared with those by the traditional maximum likelihood method.The result indicates that extraction accuracy of the forest vegetation sub-category data in this Mentougou District is 83% by using the object-oriented classification method.Compared with the traditional method,the extraction accuracy has been boosted a lot. |
来源
|
地球信息科学学报
,2012,14(4):514-522 【核心库】
|
关键词
|
eCognition
;
面向对象分类
;
多尺度分割
;
最大似然法
|
地址
|
1.
南京农业大学资源与环境科学学院, 南京, 210095
2.
中国科学院地理科学与资源研究所, 北京, 100101
|
语种
|
中文 |
ISSN
|
1560-8999 |
学科
|
林业 |
基金
|
全国生态环境10年(2000-2010年)变化遥感调查与评估专题
;
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:4611399
|
参考文献 共
30
共2页
|
1.
刘旭升. 基于BP神经网络的森林植被遥感分类研究.
林业资源管理,2005,2(1):51-54
|
CSCD被引
11
次
|
|
|
|
2.
袁金国. 森林植被遥感分类研究.
河北师范大学学报(自然科学版),1999,23(2):274-277
|
CSCD被引
8
次
|
|
|
|
3.
竞霞. 基于分区和多时相遥感数据的山区植被分类研究.
遥感技术与应用,2008,23(4):394-398
|
CSCD被引
22
次
|
|
|
|
4.
Wardlow B D. Large-area crop mapping using time-series MODIS 250m NDVI data: An assessment for the U.S.Central Great Plains.
Remote Sensing of Environment,2008(112):1096-1116
|
CSCD被引
104
次
|
|
|
|
5.
Sulong I. Mangrove mapping using Landsat imagery and aerial photographs: Kemaman district, Terengganu, Malaysia.
Environment Development and Sustainability,2002(4):135-152
|
CSCD被引
1
次
|
|
|
|
6.
陈旭. 基于对象的QuickBird遥感图像多层次森林分类.
遥感技术与应用,2009,24(1):22-27
|
CSCD被引
8
次
|
|
|
|
7.
邓媛媛. 面向对象的高分辨率影像农用地分类.
国土资源遥感,2010,4(87):117-121
|
CSCD被引
2
次
|
|
|
|
8.
乔程. 面向对象的高分辨率影像城市建筑物提取.
地理与地理信息科学,2008,24(5):36-39
|
CSCD被引
22
次
|
|
|
|
9.
Baatz M. Object-oriented and multi-scale image analysis in semantic networks.
Proc of the 2nd International Symposium on Operationalization of Remote Sensing,1999:16-20
|
CSCD被引
1
次
|
|
|
|
10.
林川. 基于中分辨率TM数据的湿地水生植被提取.
生态学报,2010,30(23):6460-6469
|
CSCD被引
38
次
|
|
|
|
11.
韩闪闪. 面向对象的土地利用变化检测方法研究.
遥感应用,2009(3):23-29
|
CSCD被引
6
次
|
|
|
|
12.
何宇华. 中巴资源卫星数据(CBERS-02)在土地调查中的应用.
中国土地科学,2007,21(2):51-57
|
CSCD被引
11
次
|
|
|
|
13.
孙晓霞. 利用面向对象的分类方法从IKONOS全色影像中提取河流和道路.
测绘科学,2006,31(1):62-64
|
CSCD被引
28
次
|
|
|
|
14.
曹凯. 面向对象的SPOT5影像城区水体信息提取研究.
国土资源遥感,2007,2(72):27-30
|
CSCD被引
3
次
|
|
|
|
15.
李晓琴. 北京山区植被覆被率遥感制图与景观格局分析--以门头沟区为例.
国土资源遥感,2003(1):23-28
|
CSCD被引
14
次
|
|
|
|
16.
Gao Y. A comparison of the performance of pixel-based and object-based classification over image with various spatial resolutions.
Archives of Photogrammetry, Remote Sensing and Spatial Information Science,2008,2(1):27-35
|
CSCD被引
1
次
|
|
|
|
17.
Yu Q. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery.
Photogrammetric Engineering and Remote Sensing,2006,72(7):799-811
|
CSCD被引
69
次
|
|
|
|
18.
张峰. 泰国水稻种植区耕地信息提取研究.
自然资源学报,2003(6):766-772
|
CSCD被引
12
次
|
|
|
|
19.
钱巧静. 面向对象的土地覆盖信息提取方法研究.
遥感技术与应用,2005,20(3):338-342
|
CSCD被引
27
次
|
|
|
|
20.
Franklin S E. Spatial and spectral classification for remote-sensing imagery.
Computers and Geosciences,1991(17):1151-1172
|
CSCD被引
2
次
|
|
|
|
|