An Approach to Differential Geometry of Fractional Order via Modified Riemann-Liouville Derivative
查看参考文献28篇
文摘
|
In order to cope with some difficulties due to the fact that the derivative of a constant is not zero with the commonly accepted Riemann-Liouville definition of fractional derivative, one (Jumarie) has proposed recently an alternative referred to as (local) modified Riemann-Liouville definition, which directly, provides a Taylor's series of fractional order for non differentiable functions. We examine here in which way this calculus can be used as a framework for a differential geometry of fractional order. One will examine successively implicit function, manifold, length of curves, radius of curvature, Christoffel coefficients, velocity, acceleration. One outlines the application of this framework to Lagrange optimization in mechanics, and one concludes with some considerations on a possible fractional extension of the pseudo-geodesic of thespecial relativity and of the Lorentz transformation. |
来源
|
Acta Mathematica Sinica. English Series
,2012,28(9):1741-1768 【核心库】
|
DOI
|
10.1007/s10114-012-0507-3
|
关键词
|
Fractional calculus
;
modified Riemann-Liouville derivative
;
fractional Taylor's series
;
fractional manifold
;
fractional geodesic
;
fractional mechanics
;
Lorentz transformation
|
地址
|
Department of Mathematics, University of Quebec at Montreal, Canada, Montreal, H3C 3P8
|
语种
|
英文 |
ISSN
|
1439-8516 |
学科
|
数学 |
文献收藏号
|
CSCD:4611371
|
参考文献 共
28
共2页
|
1.
Al-Akaidi M.
Fractal Speech Processing,2004
|
CSCD被引
1
次
|
|
|
|
2.
Almeida R. A fractional calculus of variations for multiple integrals with application to vibrating string.
J. Math. Phys,2010,3:033503, 12
|
CSCD被引
6
次
|
|
|
|
3.
Campos L M C. On a concept of derivative of complex order with applications to special functions.
IMA J. Appl. Math,1984,33:109-133
|
CSCD被引
2
次
|
|
|
|
4.
Caputo M. Linear model of dissipation whose Q is almost frequency dependent II.
Geophys. J. R. Ast. Soc,1967,13:529-539
|
CSCD被引
62
次
|
|
|
|
5.
Kober H. On fractional integrals and derivatives.
Quart. J. Math. Oxford,1940,11:193-215
|
CSCD被引
2
次
|
|
|
|
6.
Letnikov A V. Theory of differentiation of fractional order.
Math. Sb,1868,3:1-7
|
CSCD被引
2
次
|
|
|
|
7.
Liouville J. Sur le calcul des differentielles `a indices quelconques (in French).
J. Ecole Polytechnique,1832,13:71
|
CSCD被引
1
次
|
|
|
|
8.
Lv L J. The application of fractional derivatives in stochastic models driven by fractional Brownian motion.
Physica A,2010,389(21):4809-4818
|
CSCD被引
2
次
|
|
|
|
9.
Miller K S.
An Introduction to the Fractional Calculus and Fractional Differential Equations,1933
|
CSCD被引
1
次
|
|
|
|
10.
Nishimoto K.
Fractional Calculus,1989
|
CSCD被引
2
次
|
|
|
|
11.
Nottale L.
Fractal Space Time in Microphysics,1993
|
CSCD被引
1
次
|
|
|
|
12.
Oldham K B.
The Fractional Calculus. Theory and Application of Differentiation and Integration to Arbitrary Order,1974
|
CSCD被引
1
次
|
|
|
|
13.
Osler T J. Taylor’s series generalized for fractional derivatives and applications.
SIAM J. Mathematical Analysis,1971,2(1):37-47
|
CSCD被引
3
次
|
|
|
|
14.
Oustaloup A.
La derivation non entiere: theorie, synthese et applications (Non-Integer Derivation: Theory, Synthesis and Applications) (in French),1995
|
CSCD被引
1
次
|
|
|
|
15.
Podlubny I.
Fractional Differential Equations,1999
|
CSCD被引
753
次
|
|
|
|
16.
Ross B. Fractional Calculus and its Applications.
Lecture Notes in Mathematics, Vol. 457,1974
|
CSCD被引
2
次
|
|
|
|
17.
Samko S G.
Fractional Integrals and Derivatives. Theory and Applications,1987
|
CSCD被引
1
次
|
|
|
|
18.
Jumarie G. Stochastic differential equations with fractional Brownian motion input.
Int. J. Syst. Sc,1993,24(6):1113-1132
|
CSCD被引
1
次
|
|
|
|
19.
Jumarie G. On the representation of fractional Brownian motion as an integral with respect to (dt)~α.
Applied Mathematics Letters,2005,18:739-748
|
CSCD被引
6
次
|
|
|
|
20.
Jumarie G. On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion.
Applied Mathematics Letters,2005,18:817-826
|
CSCD被引
4
次
|
|
|
|
|