微重力下固体材料燃烧特性的地面实验模拟方法研究
A Ground-based Experimental Method for Solid Material Flammability Simulation in Microgravity Environment
查看参考文献17篇
文摘
|
在对水平窄通道内典型热薄固体材料的燃烧特性进行实验和数值模拟的基础上,分析了材料表面火焰传播、材料可燃极限与微重力实验结果的相似性,以及窄通道实验模拟微重力材料燃烧特性的机理。研究表明,在航天器舱内常见的低速气流条件下,高度为10mm~14mm的窄通道能较好地模拟微重力环境中材料表面火焰传播的特征,并复现材料的可燃极限曲线;窄通道内火焰诱导的浮力流动速度的最大值约为5cm/s,与常规实验通道(高度较大)相比,窄通道能够有效地限制自然对流,进而提供模拟微重力条件下材料燃烧特性的实验环境。 |
其他语种文摘
|
The flame spread characteristics over thermally thin solid materials and the flammability limits of such materials have been investigated in horizontal narrow channels by experimental measurements and numerical simulations.The mechanism of narrow channel device to produce a microgravity environment is discussed.For the low forced flow velocities typically expected in space facilities,flame spread characteristics in microgravity can be effectively reproduced in narrow channels with height of 10~14 mm.Moreover,the measured flammability data in the narrow channels are close to those obtained in microgravity environment.The maximum buoyant velocity is estimated to be about 5 cm/s in the narrow channels.Compared with typical normal gravity test channel with relatively large height,buoyant effect is essentially suppressed.Consequently,a simulated microgravity environment can be produced with the horizontal narrow channels. |
来源
|
载人航天
,2012,18(4):70-74 【核心库】
|
关键词
|
火焰传播
;
微重力
;
固体材料
;
地面模拟
;
防火安全
|
地址
|
中国科学院力学研究所, 中国科学院微重力重点实验室, 北京, 100090
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-5825 |
学科
|
能源与动力工程 |
基金
|
载人航天领域预先研究项目
|
文献收藏号
|
CSCD:4592130
|
参考文献 共
17
共1页
|
1.
Friedman R. Fire safety in spacecraft.
Fire and Materials,1996,20:235-243
|
CSCD被引
8
次
|
|
|
|
2.
Friedman R. Combustion Technology and Fire Safety for Human-crew Space Missions.
Microgravity Combustion: Fire in Free Fall,2001:525-562
|
CSCD被引
5
次
|
|
|
|
3.
张夏. 载人航天器的火灾安全问题.
载人航天,2006,4:4-11/25
|
CSCD被引
1
次
|
|
|
|
4.
Ivanov A V.
Experimental verification of material flammability in space. NASA CR-1999-209405,1999
|
CSCD被引
2
次
|
|
|
|
5.
Olson S L. Characterizing fingering flamelets using the logistic model.
Combustion Theory and Modelling,2006,10:323-347
|
CSCD被引
4
次
|
|
|
|
6.
Olson S L. Flame spread over thin fuels in actual and simulated microgravity conditions.
Combustion and Flame,2009,156:1214-1226
|
CSCD被引
7
次
|
|
|
|
7.
张夏. 不同重力下有限空间内固体表面逆风火焰传播的实验与理论研究.
中国科学院力学研究所博士后研究报告,2006
|
CSCD被引
1
次
|
|
|
|
8.
张夏. 不同重力下窄通道内薄材料表面的火焰传播.
工程热物理学报,2008,29:347-350
|
CSCD被引
3
次
|
|
|
|
9.
Frey A E. A theory of flame spread over a solid fuel including finite-rate chemical kinetics.
Combustion and Flame,1979,36:263-289
|
CSCD被引
7
次
|
|
|
|
10.
Long Y. Theoretical and numerical analysis of a spreading opposed-flow diffusion flame.
Proceedings of the Royal Society,2009,465:3209-3238
|
CSCD被引
3
次
|
|
|
|
11.
Blasi C D. Dynamics of concurrent flame spread over a thin charring solid in microgravity.
Fire and Materials,1998,22:95-101
|
CSCD被引
3
次
|
|
|
|
12.
Olson S L. Mechanisms of microgravity flame spread over a thin solid fuel: oxygen and opposed flow effects.
Combustion Science and Technology,1991,76:233-249
|
CSCD被引
8
次
|
|
|
|
13.
Olson S L. Near-limit spread over a thin solid fuel in microgravity.
Proceedings of the Combustion Institute,1988,22:1213-1222
|
CSCD被引
1
次
|
|
|
|
14.
Olson S L.
The effect of microgravity on flame spread over a thin fuel,1987
|
CSCD被引
1
次
|
|
|
|
15.
T’ien J S. Diffusion flame extinction at small stretch rates: the mechanism of radiation loss.
Combustion and Flame,1986,65:31-34
|
CSCD被引
3
次
|
|
|
|
16.
Hirano T. Measured velocity and temperature profiles near flames spreading over a thin combustible solid.
Combustion and Flame,1974,23:83-96
|
CSCD被引
3
次
|
|
|
|
17.
Sacksteder K R. Buoyant downward diffusion flame spread and extinction in partial-gravity accelerations.
Proceedings of the Combustion Institute,1994,25:1685-1692
|
CSCD被引
2
次
|
|
|
|
|