天然气水合物地层渗透率研究进展
Review on the Permeability of Hydrate-Bearing Sediments
查看参考文献60篇
文摘
|
天然气水合物开采涉及传热、水合物分解相变、多相渗流和地层变形4个物理过程。多相渗流过程伴随着对流传热,影响传热效率;多相渗流过程影响孔隙压力的消散速率,引起有效应力改变而影响地层变形;多相渗流过程影响传热的效率和孔隙压力的消散速率,使温度和压力条件发生变化,影响水合物的分解。多相渗流过程中,某相流体的有效渗透率不仅与该相流体的饱和度有关,还与地层绝对渗透率有关。地层绝对渗透率是多相渗流过程的关键参数之一。概述不同贮存状态水合物、地层孔隙率、水合物饱和度和地层有效应力对地层绝对渗透率影响的研究内容。以国内外天然气水合物地层绝对渗透率研究成果为基础,将来的研究重点主要包括粉细砂、黏土类地层和各向异性地层多相渗流研究,以及地层有效应力对绝对渗透率影响研究。 |
其他语种文摘
|
Multiphase fluid flow,Conductive and convective heat transfer,intrinsic kinetics of hydrate decomposition,and deformation of sediments are four basic physical-chemical processes in the exploitation of gas hydrate.The multiphase fluid flow leads to the pore pressure dissipation and the deformation of hydrate bearing sediments(HBS) accompanied by the convective and conductive heat transfer,and then the hydrate recovery.The absolute permeability of HBS is one of the key controlling factors.The advances in the absolute permeability with the qualitative and experienced relations to pore-scale distribution of hydrate,porosity,saturation of hydrate,and effective stress of HBS are summarized.The main directions and issues on the absolute permeability in the multiphase fluid flow of the HBS exploitation are presented. |
来源
|
地球科学进展
,2012,27(7):733-746 【核心库】
|
关键词
|
天然气水合物
;
贮存状态
;
饱和度
;
地层有效应力
;
绝对渗透率
|
地址
|
中国科学院力学研究所土力学实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-8166 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
国家自然科学基金
|
文献收藏号
|
CSCD:4585315
|
参考文献 共
60
共3页
|
1.
Sloan E D.
Clathrate Hydrates of Natural Gases,2008
|
CSCD被引
23
次
|
|
|
|
2.
Kvenvolden K A. Global occurrences of gas hydrate.
Proceedings of the Eleventh (2001) International OFFSHORE and Polar Engineering Conference,2001
|
CSCD被引
1
次
|
|
|
|
3.
叶黎明. 天然气水合物气候效应研究进展.
地球科学进展,2011,26(5):565-574
|
CSCD被引
8
次
|
|
|
|
4.
Kvenvolden K A. Gas hydrates-geological perspective and global change.
Reviews of Geophysics,1993,31(2):173-187
|
CSCD被引
211
次
|
|
|
|
5.
吴青柏. 多年冻土区天然气水合物研究综述.
地球科学进展,2008,23(2):111-119
|
CSCD被引
23
次
|
|
|
|
6.
Gornitz V. Potential distribution of methane hydrates in the worlds oceans.
Global Biogeochemical Cycles,1994,8(3):335-347
|
CSCD被引
40
次
|
|
|
|
7.
Kvenvolden K A. Potential effects of gas hydrate on human welfare.
Proceedings of the National Academy of Sciences of the United States of America,1999,96(7):3420-3426
|
CSCD被引
49
次
|
|
|
|
8.
Milkov A V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there?.
Earth-Science Reviews,2004,66(3/4):183-197
|
CSCD被引
129
次
|
|
|
|
9.
Klauda J B. Global distribution of methane hydrate in ocean sediment.
Energy & Fuels,2005,19(2):459-470
|
CSCD被引
63
次
|
|
|
|
10.
Ruppel C. Tapping methane hydrates for unconventional natural gas.
Elements,2007,3(3):193-199
|
CSCD被引
4
次
|
|
|
|
11.
Ji C. Natural gas production from hydrate decomposition by depressurization.
Chemical Engineering Science,2001,56(20):5801-5814
|
CSCD被引
38
次
|
|
|
|
12.
Moridis G J. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada.
Journal of Petroleum Science and Engineering,2004,43(3/4):219-238
|
CSCD被引
24
次
|
|
|
|
13.
Zhang X H. Formation of layered fracture and outburst during gas hydrate dissociation.
Journal of Petroleum Science and Engineering,2011,76(3/4):212-216
|
CSCD被引
5
次
|
|
|
|
14.
Lee J. An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme.
Energy Conversion and Management,2010,51(12):2510-2515
|
CSCD被引
16
次
|
|
|
|
15.
Moridis G J. Numerical studies of gas production from methane hydrates.
SPE Journal,2003,8(4):359-370
|
CSCD被引
26
次
|
|
|
|
16.
Waite W F. Physical properties of hydrate-bearing sediments.
Reviews of Geophysics,2009,47:RG4003
|
CSCD被引
88
次
|
|
|
|
17.
Helgerud M B.
Wave Speeds in Gas Hydrate and Sediments Containing Gas Hydrate: A Laboratory and Modeling Study,2001
|
CSCD被引
4
次
|
|
|
|
18.
Winters W J. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate.
American Mineralogist,2004,89(8/9):1221-1227
|
CSCD被引
50
次
|
|
|
|
19.
Tohidi B. Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels.
Geology,2001,29(9):867-870
|
CSCD被引
34
次
|
|
|
|
20.
Kleinberg R L. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability.
Journal of Geophysical Research,2003,108(B10)
|
CSCD被引
49
次
|
|
|
|
|