化学液相还原法制备零价铁纳米颗粒研究进展及展望
Review and prospect of zerovalent iron nanoparticles synthesized by chemical solution reduction process
查看参考文献62篇
文摘
|
零价铁纳米颗粒磁性能卓越应用潜力巨大,已受到广泛关注。本文综述了采用化学液相还原法制备纳米铁的研究进展。总结了纳米铁制备过程中容易团聚和氧化两个关键问题:使用稳定剂可降低纳米铁团聚程度,表面包覆外壳可抑制纳米铁深度氧化。并详细介绍了水合肼、多元醇、碱金属硼氢化物3种常用还原剂的还原性能及其在制备过程中表现出的优缺点。提出化学液相还原制备纳米铁技术的发展依赖于对稳定剂与包覆剂的深入研究,对于还原反应工艺流程的工业化放大以及如何降低成本。 |
其他语种文摘
|
Zerovalent iron nanoparticles(ZVINs) have attracted much attention for their excellent magnetic properties and great potential in many practical applications.This review summarizes the details of synthesizing ZVINs by chemical reduction of iron salts in aqueous solution.ZVINs are easy to agglomerate and oxidize,which makes them difficult to prepare,study,and utilize.Agglomeration of ZVINs can be largely inhibited by stabilizing them with various dispersing agents and oxidation of ZVINs can be minimized by coating them with different shells.In the chemical solution reduction process,three kinds of reducing agents of hydrazine hydrate and polyols and alkali metal borohydrides with different reduction performance are often used to synthesize ZVINs.The advantages and disadvantages of these reducing agents for synthesizing ZVINs are discussed.Further developments of the chemical solution reduction process,to a great extent,depend on the insight into the behavior of dispersing agents and coated shells,on the industrial scale-up of the chemical reduction process,and on the low-cost preparation of ZVINs. |
来源
|
化工进展
,2012,31(7):1542-1548,1580 【核心库】
|
关键词
|
化学液相还原
;
零价铁纳米颗粒
;
水合肼
;
多元醇
;
碱金属硼氢化物
|
地址
|
1.
内蒙古大学环境与资源学院, 中国科学院矿物学与成矿学重点实验室, 内蒙古, 呼和浩特, 010021
2.
中国科学院广州地球化学研究所, 广东, 广州, 510460
3.
合肥工业大学资源与环境工程学院, 安徽, 合肥, 230009
4.
内蒙古大学环境与资源学院, 内蒙古, 呼和浩特, 010021
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-6613 |
学科
|
化学 |
基金
|
国家教育部科学技术研究重点项目
;
内蒙古自然科学基金
;
中国科学院矿物学与成矿学重点实验室合作研究基金
;
内蒙古大学高层次人才引进科研启动项目
;
内蒙古大学国家大学生创新性实验计划项目
|
文献收藏号
|
CSCD:4574157
|
参考文献 共
62
共4页
|
1.
Fan M. Synthesis,characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite.
Chinese Science Bulletin,2010,55(11):1092-1099
|
CSCD被引
5
次
|
|
|
|
2.
Liu Z. Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs.
Bioresource Technology,2010,101(7):2562-2564
|
CSCD被引
6
次
|
|
|
|
3.
Boparai H K. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles.
Journal of Hazardous Materials,2011,186(1):458-465
|
CSCD被引
70
次
|
|
|
|
4.
Satapanajaru T. Enhancing decolorization of reactive black 5 and reactive red 198 during nano zerovalent iron treatment.
Desalination,2011,266(1/3):218-230
|
CSCD被引
6
次
|
|
|
|
5.
Kassaee M Z. Nitrate removal from water using iron nanoparticles produced by arc discharge vs. reduction.
Chemical Engineering Journal,2011,166(2):490-495
|
CSCD被引
6
次
|
|
|
|
6.
Huber D L. Synthesis, properties, and applications of iron nanoparticles.
Small,2005,1(5):482-501
|
CSCD被引
35
次
|
|
|
|
7.
Amara D. Synthesis and characterization of Fe and Fe_3O_4 nanoparticles by thermal decomposition of triiron dodecacarbonyl.
Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,339(1/3):106-110
|
CSCD被引
4
次
|
|
|
|
8.
Sun Y P. Characterization of zero-valent iron nanoparticles.
Advances in Colloid and Interface Science,2006,120(1/3):47-56
|
CSCD被引
63
次
|
|
|
|
9.
王立英. 金属纳米颗粒制备中的还原剂与修饰剂.
化学进展,2010,22(4):580-592
|
CSCD被引
11
次
|
|
|
|
10.
Huang K C. Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds.
Langmuir,2007,23(3):1419-1426
|
CSCD被引
8
次
|
|
|
|
11.
Zhang D. Surfactant-controlled synthesis of Fe nanorods in solution.
Journal of Colloid and Interface Science,2005,292(2):410-412
|
CSCD被引
1
次
|
|
|
|
12.
Moreno M S. Highly anisotropic distribution of iron nanoparticles within MCM-41 mesoporous silica.
Micron,2006,37(1):52-56
|
CSCD被引
2
次
|
|
|
|
13.
Karabelli D. Preparation and characterization of alumina-supported iron nanoparticles and its application for the removal of aqueous Cu~(2+) ions.
Chemical Engineering Journal,2011,168(2):979-984
|
CSCD被引
2
次
|
|
|
|
14.
Tseng H H. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene.
Journal of Hazardous Materials,2011,192(2):500-506
|
CSCD被引
18
次
|
|
|
|
15.
Liu S. A novel hybrid of carbon nanotubes/iron nanoparticles: Iron-filled nodule-containing carbon nanotubes.
Carbon,2005,43(7):1550-1555
|
CSCD被引
2
次
|
|
|
|
16.
Wang W. Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst.
Catalysis Communications,2010,11(11):937-941
|
CSCD被引
12
次
|
|
|
|
17.
Fan M. Core–shell structured iron nanoparticles well dispersed on montmorillonite.
Journal of Magnetism and Magnetic Materials,2009,321(20):3515-3519
|
CSCD被引
3
次
|
|
|
|
18.
Frost R L. Synthesis,characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption.
Journal of Colloid and Interface Science,2010,341(1):153-161
|
CSCD被引
11
次
|
|
|
|
19.
Zhang X. Kaolinite-supported nanoscale zero-valent iron for removal of Pb~(2+) from aqueous solution: Reactivity,characterization and mechanism.
Water Research,2011,45(11):3481-3488
|
CSCD被引
44
次
|
|
|
|
20.
Xi Y. Dispersion of zerovalent iron nanoparticles onto bentonites and use of these catalysts for orange Ⅱ decolourisation.
Applied Clay Science,2011,53(4):716-722
|
CSCD被引
1
次
|
|
|
|
|