Exponential networked synchronization of master-slave chaotic systems with timevarying communication topologies
查看参考文献34篇
文摘
|
The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time- varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method. |
来源
|
Chinese Physics. B
,2012,21(4):040503-1-040503-8 【核心库】
|
关键词
|
exponential networked synchronization
;
master-slave chaotic systems
;
algebraic graph theory
;
communication topology
|
地址
|
1.
College of Information Science and Engineering, Northeastern University, Shenyang, 110004
2.
Department of Automatic Control Engineering, Shenyang Institute of Engineering, Shenyang, 110136
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1674-1056 |
学科
|
物理学;电子技术、通信技术 |
基金
|
国家自然科学基金
;
Special Fund for Basic Scientific Research of Central Colleges, Northeastern University, China
;
Science and Technology Program of Shenyang
;
国家教育部高等学校学科创新引智计划项目
;
Program for Liaoning Innovative Research Team in University
|
文献收藏号
|
CSCD:4560796
|
参考文献 共
34
共2页
|
1.
Murray R M.
Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics and Systems,2003:1
|
CSCD被引
1
次
|
|
|
|
2.
Saber R O.
IEEE Trans. Autom. Control,2004,49:1520
|
CSCD被引
758
次
|
|
|
|
3.
Chen F.
Automatica,2009,45:1215
|
CSCD被引
24
次
|
|
|
|
4.
Scardovi L.
Automatica,2009,45:2257
|
CSCD被引
1
次
|
|
|
|
5.
Ni W.
Systems & Control Letters,2010,59:209
|
CSCD被引
84
次
|
|
|
|
6.
Jadbabaie A.
IEEE Trans. Autom. Control,2003,48:988
|
CSCD被引
407
次
|
|
|
|
7.
Moreau L.
IEEE Trans. Autom. Control,2005,50:169
|
CSCD被引
121
次
|
|
|
|
8.
Stan G B.
IEEE Trans. Autom. Control,2007,52:256
|
CSCD被引
2
次
|
|
|
|
9.
Hong Y G.
Automatica,2006,42:1177
|
CSCD被引
134
次
|
|
|
|
10.
Hong Y G.
IEEE Trans. Autom. Control,2007,52:943
|
CSCD被引
65
次
|
|
|
|
11.
Ren W.
IEEE Trans. Autom. Control,2005,50:655
|
CSCD被引
427
次
|
|
|
|
12.
Liu Y.
IEEE Trans. Autom. Control,2006,51:1734
|
CSCD被引
3
次
|
|
|
|
13.
Chopra N.
IEEE Trans. Autom. Control,2009,54:353
|
CSCD被引
6
次
|
|
|
|
14.
Hale J K.
Journal of Dynamics and Differential Equations,1996,9:1
|
CSCD被引
1
次
|
|
|
|
15.
Pogromsky A.
Int. J. Bifur. Chaos,1998,2:295
|
CSCD被引
1
次
|
|
|
|
16.
Wang Y C.
IEEE Trans. Sys. Man. Cybern. B: Cybern,2010,40:1468
|
CSCD被引
5
次
|
|
|
|
17.
Zhang H G.
IEEE Trans. Sys. Man. Cybern. B: Cybern,2010,40:831
|
CSCD被引
25
次
|
|
|
|
18.
Kocarev L.
Phys. Rev. Lett,1995,74:5028
|
CSCD被引
90
次
|
|
|
|
19.
Zhang H G.
IEEE Trans. Neural Networks,2007,18:1841
|
CSCD被引
20
次
|
|
|
|
20.
Zhang H G.
Phys. Lett. A,2006,350:363
|
CSCD被引
32
次
|
|
|
|
|