法国梧桐叶片氮含量及氮同位素对城市大气湿沉降氮的响应研究
Platanus orientalis Foliar N% and δ~(15)N Responses to Nitrogen of Atmospheric Wet Deposition in Urban Area
查看参考文献39篇
文摘
|
通过对贵阳市法国梧桐叶片为期1 a的监测(2009-03~2010-04),分析其叶片氮含量及氮同位素组成随季节变化的规律,并与同期湿沉降监测结果进行对比,探讨维管束植物叶片响应大气湿沉降氮的可能性.结果表明,法国梧桐叶片N%变化范围为1.48%~5.27%,均值为3.36%,根际土TN%为0.29%,叶片δ~(15)N变化范围为4.48‰~8.39‰,均值为6.38‰.叶片N%与δ~(15)N具有较好的相关性,随时间变化皆呈现春夏较高、秋季降低的趋势,冬季落叶,无监测数据.结合该采样点同期雨水监测数据,发现叶片N%与雨水中DIN浓度(0.57~6.74 mg.L~(-1))、叶片δ~(15)N与雨水δ~(15)NH_4~+-N呈现一致的变化规律,表明湿沉降氮是叶片吸收氮的一个重要来源,法国梧桐叶片指示大气N沉降量的变化成为可能.研究还发现法国梧桐叶片δ~(15)N比其吸收氮的2个主要端元(根际土δ~(15)TN:3.19‰±1.04‰,雨水δ~(15)N-NH_4~+:-19.76‰~-10.41‰)都偏正,表明法国梧桐在吸收氮的过程中存在着较大的同位素分馏. |
其他语种文摘
|
Leaves of Platanus orientalis were collected since Mar.2009 till Apr.2010,in an urban area at Guiyang.After mass of experiments and analysis,we carried out constructing the temporal variation of foliar N% and δ~(15)N: both higher in Spring/Summer,lower in Autumn,no data of Winter because of leaf abscission.Results showed that foliar N% varied from 1.48% to 5.27%,with an annual average of 3.36%,while the average concentration of total N in rhizospheric soil was 0.29%.The foliar N% rose and fell relative to DIN in rainwater(range from 0.57 mg·L~(-1) to 6.74 mg·L~(-1)),indicating that the N% content in foliar tissue of plant was approximately proportional to atmospheric N inputs.The range of foliar δ~(15)N were from 4.48‰ to 8.39‰,with the average of 6.33‰,much higher than the δ~(15)N-NH_4~+ of rain water(-19.76‰——10.41‰) and δ~(15)TN of rhizospheric soil(3.19‰±1.04‰).Besides,a good uniform correlation between foliar δ~(15)N and δ~(15)N-NH_4~+of rain water were found.As synthesis of two main N sources,the more positive δ~(15)N values of Platanus orientalis can be explained by isotopic fractionation during N uptake and basipetal translocation.These responses of both foliar N% and δ~(15)N to atmospheric nitrogen deposition,revealed the potential value in using vascular leaves as bio-monitors for assessment of N deposition,furthermore,for prevention and control of air pollution in urban ecosystem. |
来源
|
环境科学
,2012,33(4):1080-1085 【核心库】
|
关键词
|
法国梧桐
;
湿沉降氮
;
叶片组织氮含量
;
叶片氮同位素
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0250-3301 |
学科
|
环境科学基础理论;环境污染及其防治 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:4498159
|
参考文献 共
39
共2页
|
1.
Jung K. Anthropogenic impacts on natural nitrogen isotope variations inPinus sylvestris stands in an industrially polluted area.
Environmental Pollution,1997,97(1/2):175-181
|
CSCD被引
7
次
|
|
|
|
2.
Craft C B. Estimating sources of soil organic matter in natural and transplanted estuarine marshes using stable isotopes of carbon and nitrogen.
Estuarine, Coastal and Shelf Science,1988,26(6):633-641
|
CSCD被引
4
次
|
|
|
|
3.
Heaton T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review.
Chemical Geology: Isotope Geoscience Section,1986,59(1):87-102
|
CSCD被引
125
次
|
|
|
|
4.
Norby R J. Nitrogen deposition: a component of global change analyses.
New Phytologist,1998,139(1):189-200
|
CSCD被引
6
次
|
|
|
|
5.
Binkley D. Does atmospheric deposition of nitrogen threaten Swedish forests?.
Forest Ecology and Management,1997,92(1/3):119-152
|
CSCD被引
11
次
|
|
|
|
6.
Gundersen P. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data.
Forest Ecology and Management,1998,101(1/3):37-55
|
CSCD被引
138
次
|
|
|
|
7.
Xiao H Y. Chemical characteristics of water-soluble components in TSP over Guiyang, SW China, 2003.
Atmospheric Environment,2004,38(37):6297-6306
|
CSCD被引
58
次
|
|
|
|
8.
Widory D. Nitrogen isotopes: tracers of origin and processes affecting PM_(10) in the atmosphere of Paris.
Atmospheric Environment,2007,41(11):2382-2390
|
CSCD被引
5
次
|
|
|
|
9.
Waser N A D. Geographic variations in the nitrogen isotope composition of surface particulate nitrogen and new production across the North Atlantic Ocean.
Deep Sea Research Part I: Oceanographic Research Papers,2000,47(7):1207-1226
|
CSCD被引
2
次
|
|
|
|
10.
Yeatman S G. Can the study of nitrogen isotopic composition in size-segregated aerosol nitrate and ammonium be used to investigate atmospheric processing mechanisms?.
Atmospheric Environment,2001,35(7):1337-1345
|
CSCD被引
5
次
|
|
|
|
11.
Press M C. The potential importance of an increased atmospheric nitrogen supply to the growth of ombrotrophicSphagnum species.
New Phytologist,1986,103(1):45-55
|
CSCD被引
7
次
|
|
|
|
12.
Stewart G R. ~(15)N natural abundance of vascular rainforest epiphytes: implications for nitrogen source and acquisition.
Plant, Cell & Environment,1995,18(1):85-90
|
CSCD被引
5
次
|
|
|
|
13.
Liu X Y. δ~(13)C and δ~(15)N of mossHaplocladium microphyllum (Hedw.) Broth. for indicating growing environment variation and canopy retention on atmospheric nitrogen deposition.
Atmospheric Environment,2007,41(23):4897-4907
|
CSCD被引
12
次
|
|
|
|
14.
Pitcairn C E R. Deposition of fixed atmospheric nitrogen and foliar nitrogen content ofbryophytes andCalluna vulgaris (L.) Hull.
Environmental Pollution,1995,88(2):193-205
|
CSCD被引
10
次
|
|
|
|
15.
Ammann M. Uptake and assimilation of atmospheric NO_2-N by spruce needles (Picea abies): a field study.
Water, Air, and Soil Pollution,1995,85(3):1497-1502
|
CSCD被引
3
次
|
|
|
|
16.
Xiao H Y. Nitrogen isotope variations in camphor(Cinnamomum Camphora) leaves of different ages in upper and lower canopies as an indicator of atmospheric nitrogen sources.
Environmental Pollution,2011,159(2):363-367
|
CSCD被引
4
次
|
|
|
|
17.
Skinner R A. Heathland vegetation as a bio-monitor for nitrogen deposition and source attribution using δ~(15)N values.
Atmospheric Environment,2006,40(3):498-507
|
CSCD被引
8
次
|
|
|
|
18.
Hogberg P. Tansley Review No.95 ~(15)N natural abundance in soil-plant systems.
New Phytologist,1997,137(2):179-203
|
CSCD被引
63
次
|
|
|
|
19.
冀鸿. 植物在环境监测中的应用.
山东环境,2003(6):54-55
|
CSCD被引
1
次
|
|
|
|
20.
Xiao H Y. Sources of nitrogen and sulfur in wet deposition at Guiyang, southwest China.
Atmospheric Environment,2002,36(33):5121-5130
|
CSCD被引
54
次
|
|
|
|
|