一种基于CFD的叶轮机非定常气动力组合建模方法
A CFD-Based Compositional Methodology of Unsteady Aerodynamic Modeling for Turbomachinery
查看参考文献16篇
文摘
|
为了获得一个准确高效的非定常空气动力学模型并将其应用于叶轮机叶片颤振特性分析中去,论文发展了一种基于CFD方法的叶轮机非定常气动力组合建模方法,可以快速计算叶轮机叶片在等相角差振动时的气动阻尼系数。运用小扰动流场的叠加原理,通过不同通道数模型的非定常流场求解(通常需要两次或三次),针对流场的周期性边界条件,组合分析得到一系列更多通道数情况下的非定常气动力低阶模型。基于这种降阶模型计算的气动阻尼系数与直接的CFD方法计算结果吻合很好,计算效率提高10倍以上。 |
其他语种文摘
|
Direct CFD method was used in the analysis of flutter characteristics for blades of turbomachinery,and its main trouble was the relative computational effort.The present paper introduces a CFD-based compositional modeling methodology of unsteady aerodynamics for turbomachinery that can compute the aerodamping coefficients of vibrating turbine blades with equal Inter-Blade-Phase-Angle.Several unsteady CFD computations with different number of blade passages are needed for the construction of the Reduce-Order-Model(ROM).Following the superposition principle of small disturbance flow and the periodicity of the flow field of turbomachinery,a series of unsteady aerodynamic ROMs with more blade passages are acquired by solving mirror equations.The aeroelastic characteristics of Standard Test Configuration-4(STCF-4) are analyzed by using this method.The results are compared with that attained by direct CFD method and ROM with single CFD computation.They agree well with each other.By applying this new ROM,the computational efficiency is improved by ten times,compared with direct CFD method while remaining the precision. |
来源
|
推进技术
,2012,33(1):37-42 【核心库】
|
关键词
|
颤振
;
降阶模型
;
计算流体力学
;
叶轮机
|
地址
|
西北工业大学, 翼型叶栅空气动力学国防科技重点实验室, 陕西, 西安, 710072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4055 |
学科
|
航空 |
基金
|
国家教育部高等学校博士学科点专项科研基金
;
西北工业大学基础研究基金
|
文献收藏号
|
CSCD:4467323
|
参考文献 共
16
共1页
|
1.
Rzadkowski R. 3-D Inviscid Self-Excited Vibrations of a Blade Row in the Last Stage Turbine.
Journal of Fluids and Structures,2007,23(6):858-873
|
CSCD被引
6
次
|
|
|
|
2.
Rzadkowski R. A Coupled Fluid-Structure Analysis for 3-D Inviscid Flutter of IV Standard Configuration Polish Academy of Sciences.
Journal of Sound and Vibration,2002,251(2):315-327
|
CSCD被引
1
次
|
|
|
|
3.
Srivastava R. Aeroelastic Analysis of Turbomachinery.
International Journal of Numerical Methods for Heat & Fluid Flow,2004,14(3):366-381
|
CSCD被引
4
次
|
|
|
|
4.
Srivastava R. Numerical Simulation of Aerodamping for Flutter Analysis of Turbomachinery Blade Rows.
Journal of Propulsion and Power,2003,19(2):260-268
|
CSCD被引
9
次
|
|
|
|
5.
杨青真. 基于气/固耦合非定常流动的叶栅颤振分析.
推进技术,2005,26(6):1001-4055
|
CSCD被引
1
次
|
|
|
|
6.
张扬军. 蒸汽轮机成组叶片的气动弹性模型.
航空动力学报,1994,9(3)
|
CSCD被引
2
次
|
|
|
|
7.
Dowell E H. Modeling of Fluid Structure Interaction.
Annual Review of Fluid Mechanics,2001,33(1):445-490
|
CSCD被引
35
次
|
|
|
|
8.
Lucia D J. Reduced-Order Modeling: New Approaches for Computational Physics.
Progress in Aerospace Sciences,2004,40(1):51-117
|
CSCD被引
46
次
|
|
|
|
9.
Epureanu B I. Reduced-Order Model of Unsteady Transonic Viscous Flow in Turbomachinery.
Journal of Fluids and Structures,2000,14(8):1215-1234
|
CSCD被引
1
次
|
|
|
|
10.
张伟伟. 基于CFD的气动力建模及其在气动弹性中的应用.
力学进展,2008,38(1):77-86
|
CSCD被引
16
次
|
|
|
|
11.
Zhang W. Reduced-Order-Model-Based Flutter Analysis at High Angle of Attack.
Journal of Aircraft,2007,44(6):2086-2089
|
CSCD被引
3
次
|
|
|
|
12.
张伟伟. 基于ROM技术的阵风响应分析方法.
力学学报,2008,40(5):593-598
|
CSCD被引
10
次
|
|
|
|
13.
Zhang W. ROM Based Aeroservoelastic Analysis in Transonic Flow.
Journal of Aircraft,2009,46(6):2178-2183
|
CSCD被引
3
次
|
|
|
|
14.
Zhang W. Control Law Design for Transonic Aeroservoelasticity.
Aerospace Science and Technology,2007,11(2/3):136-145
|
CSCD被引
3
次
|
|
|
|
15.
张陈安. 一种高效的叶轮机叶片气动阻尼计算方法.
力学学报,2011,43(5):826-833
|
CSCD被引
9
次
|
|
|
|
16.
Bolcs A. Aeroelasticity in Turbomachines—Comparison of Theoretical and Experimental Cascade Results.
Communication du Laboratoire de Thermique Appliquee et de Turbomachines, No. 13, L’Ecole Polytechnique Federale de Lausanne (EPFL),1986
|
CSCD被引
1
次
|
|
|
|
|