薄盘光滑样条插值中三种协变量方法的降水量插值精度比较
Comparative Analysis of Three Covariates Methods in Thin-Plate Smoothing Splines for Interpolating Precipitation
查看参考文献25篇
文摘
|
在薄盘光滑样条插值中,高相关协变量的选取决定了插值结果的精确性。以2001-2009年全国728个气象站点日降水为数据源,提取年降水量数据,在分析多年平均降水量与两协变量高程(DEM)和距海岸线距离(DCL)的空间相关性基础上,利用ANUSPLIN软件,比较不同协变量下降水量插值结果精度在全国尺度以及区域尺度上的差异。以DEM、DCL及DEM-DCL分别为协变量对降水量数据进行空间插值发现:①在全国尺度上,DEM法的平均绝对误差(MAE)为47.79,略低于DEM-DCL法(48.90),但显著低于DCL法(55.54);且DEM法的平均相对误差和均方根误差也明显低于其它两种方法。②在区域尺度上,除西藏地区外的其他7个区域,3种方法的插值误差与全国尺度上相一致。西藏地区降水插值结果以DCL法的精度最高,而DEM法则较差。研究建议除在西藏地区的降水量插值研究中采用DCL法,在全国其他大部分区域采用DEM法。 |
其他语种文摘
|
In the thin-plate smoothing splines interpolation,the accuracy of interpolation results is mainly determined by choosing the independent covariate.Annual precipitation data were extracted by using daily precipitation data of 728 meteorological stations from 2001 to 2009 in China.We evaluated spatial correlation relationships between annual precipitation and two covariates such as DEM and distance from the coastline to each point(DCL) and compared the accuracy difference of precipitation interpolation results from different covariates in the national scale and regional scale.All interpolation work has been conducted with the aid of the software of ANUSPLIN.We used three interpolation methods,which respectively considered DEM,DCL and DEM-DCL as the covariates to obtain spatial distribution of precipitation.Our analyses show that,(1) in the national scale,the mean absolute error(MAE) of interpolation method of DEM is 47.79,which is slightly lower than that of the method of DEM-DCL(48.90),while obviously lower than that of the method of DCL(55.54),and MRE and RMSE of the method of DEM were also lower than other two methods significantly.(2) In regional scale,the errors of three methods of interpolation are the same as that in national scale except Tibet.The accuracy of precipitation interpolation results was the highest using DCL method,and the poorest using DEM method.Results suggest that precipitation interpolation method of DEM could be widely used in some relevant national scale researches,and precipitation interpolation method of DCL was strongly recommended in Tibet. |
来源
|
地理科学进展
,2012,31(1):56-62 【核心库】
|
关键词
|
降水量插值
;
ANUSPLIN
;
协变量
;
精度
|
地址
|
1.
临沂大学资源环境学院, 山东省水土保持与环境保育重点实验室, 山东, 临沂, 276005
2.
香港中文大学地理与资源管理学系, 香港
3.
中国科学院地理科学与资源研究所, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
大气科学(气象学) |
基金
|
国家教育部新世纪优秀人才支持计划
;
临沂市重大科技创新项目
|
文献收藏号
|
CSCD:4437305
|
参考文献 共
25
共2页
|
1.
Marie B. How uncertainties in future climate change predictions translate into future terrestrial carbon fluxes.
Global Change Biology,2005,11(6):959-970
|
CSCD被引
4
次
|
|
|
|
2.
潘耀忠. 基于DEM的中国陆地多年平均温度插值方法.
地理学报,2004,59(3):666-374
|
CSCD被引
1
次
|
|
|
|
3.
Nynke H. The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data.
Climate Dynamics,2010,35(5):841-858
|
CSCD被引
1
次
|
|
|
|
4.
朱会义. 降雨信息空间插值的不确定性分析.
地理科学进展,2004,23(2):34-42
|
CSCD被引
69
次
|
|
|
|
5.
Jorge M. Estimation models for precipitation in mountainous regions: The use of GIS and multivariate analysis.
Journal of Hydrology.,2003,270(1/2):1-11
|
CSCD被引
39
次
|
|
|
|
6.
何红艳. 降水空间插值技术的研究进展.
生态学杂志,2005,24(10):1187-1191
|
CSCD被引
74
次
|
|
|
|
7.
何红艳. 利用GIS和多变量分析估算青藏高原月降水.
生态学报,2005,25(11):2933-2938
|
CSCD被引
8
次
|
|
|
|
8.
刘志红. 基于ANUSPLIN的时间序列气象要素空间插值.
西北农林科技大学学报:自然科学版,2008,36(10):227-234
|
CSCD被引
49
次
|
|
|
|
9.
Cristina P. Seasonal precipitation interpolation at the Valencia region with multivariate methods using geographic and topographic information.
International Journal of Climatology,2010,30(10):1547-1563
|
CSCD被引
6
次
|
|
|
|
10.
Ijaz H. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan.
Advances inWater Resources,2010,33(8):880-886
|
CSCD被引
4
次
|
|
|
|
11.
Bruce D. Spatial Mapping of Ozone and SO2 Trends in Europe.
Science of Total Environment,2010,408(20):4795-4806
|
CSCD被引
5
次
|
|
|
|
12.
Cuauhtemoc S. Spline models of contemporary 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation.
Climate Change,2010,102(3/4):595-623
|
CSCD被引
1
次
|
|
|
|
13.
Effie K. Assessment of interpolated ERA-40 reanalysis temperature and precipitation against observations of the Balkan Peninsula.
Theoretical and Applied Climatology,2010,102(1/2):115-124
|
CSCD被引
1
次
|
|
|
|
14.
Hijmans R. Very high resolution interpolated climate surfaces for global land areas.
International Journal of Climatology,2005,25(15):1965-1978
|
CSCD被引
664
次
|
|
|
|
15.
Hutchinson M. Development and Testing of Canada-Wide Interpolated Spatial Models of Daily Minimum-Maximum Temperature and Precipitation for 1961-2003.
Journal of Applied Meteorology and Climatology,2009,48(4):725-741
|
CSCD被引
13
次
|
|
|
|
16.
Price D. A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data.
Agricultural and Forest meteorology,2000,101(2/3):81-94
|
CSCD被引
95
次
|
|
|
|
17.
阎洪. 薄板光顺样条插值与中国气候空间模拟.
地理科学,2004,24(2):163-169
|
CSCD被引
44
次
|
|
|
|
18.
刘志红. 专用气候数据空间插值软件ANUSPLIN及其应用.
气象,2008,34(2):92-100
|
CSCD被引
121
次
|
|
|
|
19.
门明新. 基于地统计学的河北省降雨侵蚀力空间格局研究.
中国农业科学,2006,39(11):2270-2277
|
CSCD被引
18
次
|
|
|
|
20.
Murat Z. Determination of bioclimatic comfort in Erzurum-Rize expressway corridor using GIS.
Building and Environment,2010,45(1):158-164
|
CSCD被引
1
次
|
|
|
|
|