云南金平铜厂斑岩Cu(Mo-Au)矿床含矿石英正长斑岩地球化学特征及成因机制探讨
Geochemical characteristics and petrogenesis of the quartz syenite porphyry from Tongchang porphyry Cu(Mo-Au) deposit in Jinping County,Yunan Province
查看参考文献68篇
文摘
|
铜厂斑岩型Cu(Mo-Au)矿床位于金沙江-红河富碱侵入岩带的南段,其含矿的石英正长斑岩侵入体属金沙江-红河富碱侵入岩带的重要组成部分。对铜厂石英正长斑岩开展详细的地球化学研究结果表明,其具有高碱、富钾及准铝质-弱过铝质等特征,属钾玄岩系列岩石;微量和稀土元素分析表明,铜厂石英正长斑岩明显富集Rb、Ba、Th、U、K、La和Sr等大离子亲石元素,相对亏损Nb、Ta和Ti等高场强元素,具有明显的"TNT"负异常,稀土总量高,明显富集轻稀土而亏损重稀土,轻重稀土分馏显著;(~(87)Sr/~(86)Sr)_i为0.707097~0.707138,ε_(Nd)(t)为-7.1~-6.8,在Sr-Nd同位素相关图上,与EMII来源岩石相似。对比金沙江-红河富碱侵入岩带北段的玉龙含矿的二长花岗斑岩和中段的马厂箐含矿的花岗斑岩的地球化学特征,铜厂含矿斑岩具有高的全碱、微量元素和稀土元素含量、高的(~(87)Sr/~(86)Sr)_i值和低的ε_(Nd)(t)值、不具埃达克质岩属性等特征。综合研究表明,铜厂含矿的石英正长斑岩在成因类型上属于A型花岗岩类,形成于~35Ma的晚碰撞走滑环境且直接起源于EMII地幔的部分熔融。铜厂与玉龙及马厂箐斑岩型Cu(Mo-Au)矿床含矿斑岩地球化学特征和成矿规模存在差异,与源区物质的部分熔融程度和地壳物质的混染程度密切相关。 |
其他语种文摘
|
The Tongchang porphyry Cu(Mo-Au) deposit is located in southern segment of the Jinshajiang-Red River alkali-rich intrusive belt.The Tongchang quartz syenite porphyry intrusion is one important member of the Jinshajiang-Red River alkali-rich intrusions.Detailed geochemical study on the Tongchang quartz syenite porphyries indicates that it is characterized by high alkali,metaluminous to weakly peraluminous and enrichment in potassium,and belongs to shoshonitic rock.These rocks are obviously enriched in LILEs(such as Rb,Ba,Th,U,K,La and Sr,etc.),and depleted in HFSEs(such as Ta,Nb and Ti,etc.),with "TNT" negative anomaly.They also have high ∑REE and LREE contents and strong fractionation between LREEs and HREEs.The Sr-Nd isotopic compositions of the Tongchang quartz syenite porphyries exhibit a range of(~(87)Sr/~(86)Sr)_i ratios from 0.707097 to 0.707138,and ε_(Nd)(t) values from-7.1 to-6.8.In the(~(87)Sr/~(86)Sr)_i-ε_(Nd)(t) diagram,the Tongchang quartz syenite porphyries are similar to those originated from EMII source.Compared with geochemical characteristics of the Yulong and Machangqing porphyries in northern and central segments of the Jinshajiang-Red River alkali-rich intrusive belt,respectively,the Tongchang porphyries are characterized by higher whole-rock alkali contents,higher(~(87)Sr/~(86)Sr)_i ratios,lowerε_(Nd)(t) values,and exhibit no adakitic affinitiy.An integrated study reveals that the Tongchang quartz syenite porphyries genetically belong to A-type granitoid,and formed in late collisional strike-slip setting at ~35Ma which were directly derived from partial melting of EMII.The geochemical characteristics of host porphyries and ore-forming scales of the Tongchang,Yulong and Machangqing porphyry Cu(Mo-Au) deposits have some notable diversities,which may have close relationship with the partial melting degrees and crustal contaminating degrees for their host porphyry sources. |
来源
|
岩石学报
,2011,27(10):3109-3122 【核心库】
|
关键词
|
石英正长斑岩
;
地球化学特征
;
成因机制
;
铜厂斑岩型Cu(Mo-Au)矿床
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
中国科学院知识创新工程重要方向项目
;
国家自然科学基金
;
国家重点基金
|
文献收藏号
|
CSCD:4429238
|
参考文献 共
68
共4页
|
1.
Bi X W. Crystallisation conditions (T, P, fO_2) from mineral chemistry of Cu- and Au-mineralised alkaline intrusions in the Red River-Jinshajiang alkaline igneous belt, western Yunnan Province, China.
Mineralogy and Petrology,2009,96(1/2):43-58
|
CSCD被引
24
次
|
|
|
|
2.
Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects.
Lithos,2007,97(1/2):1-29
|
CSCD被引
340
次
|
|
|
|
3.
Chung S L. Intraplate extension prior to continental extrusion along the Ailao Shan Red River shear zone.
Geology,1997,25(4):311-314
|
CSCD被引
147
次
|
|
|
|
4.
Chung S L. Diachronous uplift of the Tibetan plateau starting 40Myr ago.
Nature,1998,394(6695):769-773
|
CSCD被引
246
次
|
|
|
|
5.
Chung S L. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet.
Geology,2003,31(11):1021-1024
|
CSCD被引
391
次
|
|
|
|
6.
Collins W J. Nature and origin of A-type granites with particular reference to south-eastern Australia.
Contributions to Mineralogy and Petrology,1982,80(2):189-200
|
CSCD被引
818
次
|
|
|
|
7.
Defant M J. Derivation of some modern arc magmas by melting of young subducted lithosphere.
Nature,1990,347(6294):662-665
|
CSCD被引
1422
次
|
|
|
|
8.
Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantle.
Nature,1984,309(5971):753-757
|
CSCD被引
272
次
|
|
|
|
9.
Hattori K H. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA.
Mineralium Deposita,2001,36(8):799-806
|
CSCD被引
52
次
|
|
|
|
10.
Heinrich C A. The formation of economic porphyry copper (-gold) deposits: Constraints from microanalysis of fluid and melt inclusions.
Mineral Deposits and Earth Evolution,2005,248:247-263
|
CSCD被引
1
次
|
|
|
|
11.
Hou Z Q. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet.
Economic Geology,2003,98(1):125-145
|
CSCD被引
209
次
|
|
|
|
12.
Hou Z Q. Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: Constraints from Re-Os dating of molybdenite.
Mineralium Deposita,2006,41(1):33-45
|
CSCD被引
69
次
|
|
|
|
13.
Ionov D A. Nb-Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace-element fractionations.
Earth and Planetary Science Letters,1995,131(3/4):341-356
|
CSCD被引
63
次
|
|
|
|
14.
Jiang Y H. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints.
Earth and Planetary Science Letters,2006,241(3/4):617-633
|
CSCD被引
103
次
|
|
|
|
15.
Liang H Y. Zircon Ce~(4+)/Ce~(3+) ratios and ages for Yulong ore-bearing porphyries in eastern Tibet.
Mineralium Deposita,2006,41(2):152-159
|
CSCD被引
128
次
|
|
|
|
16.
McInnes B I A. Carbonated, alkaline hybridizing melts from a sub-arc environment: Mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea.
Earth and Planetary Science Letters,1994,122(1/2):125-141
|
CSCD被引
15
次
|
|
|
|
17.
Mungall J E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits.
Geology,2002,30(10):915-918
|
CSCD被引
231
次
|
|
|
|
18.
Nelson D R. Isotopic characteristics of potassic rocks: Evidence for the involvement of subducted sediments in magma gensis.
Lithos,1992,28:403-420
|
CSCD被引
38
次
|
|
|
|
19.
Oyarzun R. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism.
Mineralium Deposita,2001,36(8):794-798
|
CSCD被引
131
次
|
|
|
|
20.
Qi L. Determination of trace elements in granites by inductively coupled plasma mass spectrometry.
Talanta,2000,51(3):507-513
|
CSCD被引
526
次
|
|
|
|
|