详细化学反应模型中温度修正项特性研究
Study on the chemical reaction kinetics of detonation models
查看参考文献20篇
文摘
|
本研究主要讨论了爆轰过程中混合气体比热比的变化、详细化学反应模型中温度修正项的函数表达形式、以及活化能对化学反应动力学特性的影响。通过对传统Arrhenius定律的分析完善,提出了具有温度指数修正的总包一步爆轰计算模型。采用几个常用的爆轰计算模型,对满足化学当量比的H2/Air混合气体,开展了爆轰特性的数值模拟对比研究。计算结果表明,新提出的爆轰计算模型能够得到的胞格尺度与实验值符合良好,首次实现了爆轰波胞格尺度的定量数值模拟。论文进一步建立了总包反应模型与详细化学反应模型之间的关系,讨论了详细化学反应模型中温度修正项的物理意义。 |
其他语种文摘
|
In this paper, the influences of specific heat ratio, the modification term in the detailed reaction kinetics, and the activation energy on the properties of chemical reaction kinetics of detonation models are studied. The results first demonstrate that the temperature power function to modify the chemical reaction rates of detailed chemical reaction kinetics should be replaced by a temperature exponential function, which is produced by the variation of specific heat ratio during the reaction process, physically. A new overall one-step detonation model with variable specific ratio and gas constant is proposed to improve the property of Arrhenius law. Two dimensional numerical simulations with this new model are conducted, and the detonation cell sizes are in agreement with experimental results quantitatively. |
来源
|
中国科学. 物理学
, 力学, 天文学,2011,41(11):1296-1306 【核心库】
|
DOI
|
10.1360/132011-265
|
关键词
|
爆轰波
;
总包反应模型
;
详细化学反应模型
;
化学反应动力学
|
地址
|
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7275 |
学科
|
化学 |
基金
|
国家自然科学基金
;
中国科学院知识创新工程重要方向项目
|
文献收藏号
|
CSCD:4424194
|
参考文献 共
20
共1页
|
1.
Taki S. Numerical analysis of two-dimensional nonsteady detonations.
AIAA J,1978,16:73-77
|
CSCD被引
20
次
|
|
|
|
2.
Vasilev A A. Quasi-steady regimes of wave propagation in active mixtures.
Shock Waves,2008,18:245-253
|
CSCD被引
1
次
|
|
|
|
3.
Oran E S. Numerical simulations of detonations in hydrogen-air and methane-air mixtures.
8th International Symposium On Combustion,1981:1641-1649
|
CSCD被引
1
次
|
|
|
|
4.
Kailasanath K. Determination of detonation cell-size and the role of transverse-waves in two-dimensional detonations.
Combust Flame,1985,61(3):199-205
|
CSCD被引
8
次
|
|
|
|
5.
Bourlioux A. Theoretical and numerical structure for unstable two-dimensional detonations.
Combust Flame,1992,90(3/4):211-229
|
CSCD被引
5
次
|
|
|
|
6.
Gamezo V N. Formation and evolution of two-dimensional cellular detonations.
Combust Flame,1999,116(1/2):154-165
|
CSCD被引
19
次
|
|
|
|
7.
Choi J Y. Some numerical issues on simulation of detonation cell structures.
Combust Explosion Shock Waves,2008,44(5):560-578
|
CSCD被引
4
次
|
|
|
|
8.
Liang Z. Cell structure and stability of detonations with a pressure-dependent chain-branching reaction rate model.
Combust Theor Model,2005,9(1):93-112
|
CSCD被引
1
次
|
|
|
|
9.
Ma F. Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines.
J Propuls Power,2005,21(3):512-526
|
CSCD被引
4
次
|
|
|
|
10.
Shepherd J E. Detonation in gases.
Proc Combust Inst,2009,32:83-98
|
CSCD被引
14
次
|
|
|
|
11.
Pintgen F. Direct observations of reaction zone structure in propagating detonations.
Combust Flame,2003,133:211-229
|
CSCD被引
20
次
|
|
|
|
12.
Oran E S. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model.
Combust Flame,1998,113:147-163
|
CSCD被引
25
次
|
|
|
|
13.
Hu X Y. The cellular structure of a two-dimensional H2/O2/Ar detonation wave.
Combust Theor Model,2004,8(2):339-359
|
CSCD被引
4
次
|
|
|
|
14.
Togashi F. Numerical simulation of H2/air detonation using unstructured mesh.
Shock Waves,2009,19:151-162
|
CSCD被引
4
次
|
|
|
|
15.
Kaneshige M.
Detonation Database. Technical Report FM97-8, GALCIT,1997
|
CSCD被引
2
次
|
|
|
|
16.
Liu Y F. Reconsideration on the role of the specific heat ratio in Arrhenius law applications.
Acta Mech Sin,2008,24:261-266
|
CSCD被引
2
次
|
|
|
|
17.
Endo T. A simplified analysis on a pulse detonation engine mode.
Trans Jpn Soc Aeronaut Space Sci,2002,44(146):217-222
|
CSCD被引
7
次
|
|
|
|
18.
Korobeinikov V P. Propagation of blast wave in a combustion gas.
Astronaut Acta,1972,17(4/5):529-537
|
CSCD被引
10
次
|
|
|
|
19.
Shu C W. Efficient Implementation of essentially non-oscillatory shock-capturing schemes II.
J Comput Phys,1989,83:32-78
|
CSCD被引
124
次
|
|
|
|
20.
Steger J L. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods.
J Comput Phys,1981,40:263-293
|
CSCD被引
103
次
|
|
|
|
|