新型细晶Ni_3Al涂层的高温氧化行为
HIGH TEMPERATURE OXIDATION BEHAVIOR OF A NOVEL FINE-GRAINED Ni3Al COATING
查看参考文献16篇
文摘
|
采用Ni和Al颗粒复合电沉积与后续真空退火的方法,分别于600℃和800℃退火温度下制备了两种新型细晶Ni3Al涂层。与粗晶合金相比,经1000℃氧化20h后,合金的氧化层发生大面积剥落,而两种涂层的氧化膜粘附性佳,其主要原因为细晶涂层内的大量晶界促进Al向氧化前沿的扩散,从而抑制了氧化膜/基体界面处“Kirkendall”孔洞的形成与长大。同时发现,800℃退火涂层氧化膜结构由外至内分别为NiO/NiAl204/Al203,而600℃退火涂层仅生成NiAl_2O_4与Al_2O_3,对该原因进行了探讨。 |
其他语种文摘
|
Fine-grained γ'-Ni_3Al coatings were developed by a two-step process: co-electrodeposition of Ni with Al particles and subsequent annealing in vacuum at 600 ℃ or 800℃. After oxidation at 1000℃ in air for 20 h, the scales formed on both coatings exhibited better adhesion than that on a coarse-grained Ni_3Al alloy, because the fine-grained coating structure suppressed the formation of voids at the scale/metal interface. Moreover, the scale formed on the coating by annealing at 800℃ consisted of NiO, NiAl_2O_4 and Al_2O_3, while the scale on the coating by annealing at 600℃ consisted of NiAl_2O_4 and Al_2O_3. The reason for this result is related to that the latter coating had a finer-grained structure, which promoted rapid formation of a continuum layer of Al_2O_3. |
来源
|
中国腐蚀与防护学报
,2011,31(6):414-418 【核心库】
|
关键词
|
氧化
;
细晶
;
复合电沉积
;
退火
;
孔洞
|
地址
|
1.
哈尔滨工程大学材料科学与化学工程学院, 金属腐蚀与防护国家重点实验室, 哈尔滨, 150001
2.
中国科学院金属研究所, 金属腐蚀与防护国家重点实验室, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-4537 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:4414423
|
参考文献 共
16
共1页
|
1.
Deevi S C. Nickel and iron aluminides: An overview on properties, processing, and applications.
Intermetallics,1996,4:357-375
|
CSCD被引
39
次
|
|
|
|
2.
Kuenzly J D. Oxidation mechanism of Ni_3Al containing yttrium.
Oxid. Met,1974,8:139-178
|
CSCD被引
11
次
|
|
|
|
3.
Taniguchi S. Isothermal oxidation behavior of Ni_3Al-0.1B base alloys containing Ti, Zr, or Hf additions.
Oxid. Met,1986,26:1-17
|
CSCD被引
2
次
|
|
|
|
4.
Choi S C. High-temperature oxidation behavior of pure Ni_3Al.
Oxid. Met,1996,46:51-72
|
CSCD被引
8
次
|
|
|
|
5.
Wang F H. Oxidation resistance of sputtered Ni_3(AlCr) nanocrystalline coating.
Oxid. Met,1997,47:247-258
|
CSCD被引
16
次
|
|
|
|
6.
Xu C. Cyclic oxidation of an ultrafine-grained and CeO_2-dispersed delta-Ni_2Al_3 coating.
Corros, Sci,2010,52:740-747
|
CSCD被引
13
次
|
|
|
|
7.
Susan D F. Reaction synthesis of Ni-Al-based particle composite coatings.
Metall. Mater. Trans. A,2001,32:379-390
|
CSCD被引
5
次
|
|
|
|
8.
Liu H F. Reactive oxide-dispersed Ni_3Al intermetallic coatings by sediment co-deposition.
Intermetallics,2005,13:805-817
|
CSCD被引
4
次
|
|
|
|
9.
Yang X. Effect of annealing treatment on the oxidation of an electrodeposited alumina-forming Ni-Al nanocomposite.
Corros. Sci,2008,50:3227-3232
|
CSCD被引
5
次
|
|
|
|
10.
Yang X. Size effect of Al particles on the structure and oxidation of Ni/Ni_3Al composites transformed from electrodeposited Ni-Al films.
Scr. Mater,2007,56:509-512
|
CSCD被引
6
次
|
|
|
|
11.
Peng X. Oxidation behavior of a Ni-La_2O_3 codeposited film on nickel.
J. Electrochem. Soc,1998,145:389-398
|
CSCD被引
14
次
|
|
|
|
12.
Raineri V. Voids in silicon by He implantation: From basic to applications.
J. Mater. Res,2000,15:1449-1477
|
CSCD被引
7
次
|
|
|
|
13.
Zinkle S J. Stability of vacancy clusters in metals.1. energy calculations for pure metals.
Philos. Mag,1987,55:111-124
|
CSCD被引
5
次
|
|
|
|
14.
Hart E W. On the role of dislocations in bulk diffusion.
Acta Metall,1957,5:597-608
|
CSCD被引
26
次
|
|
|
|
15.
Janssen M M P. Diffusion in nickel-rich part of Ni-Al system at 1000 degrees to 1300 degrees C-Ni_3Al layer growth, diffusion-coefficients, and interface concentrations.
Metall. Trans,1973,4:1623-1650
|
CSCD被引
6
次
|
|
|
|
16.
Pint B A. On the formation of interfacial and internal voids in alpha-Al_2O_3 scales.
Oxi. Met,1997,48:303-328
|
CSCD被引
1
次
|
|
|
|
|