|
He与He+CO_2双层气流保护TIG焊工艺
He and He+CO_2 double shielded TIG welding process
查看参考文献12篇
文摘
|
以0Cr13Ni5Mo水轮机转轮用低碳马氏体不锈钢为母材,开展了内层为氦,外层为He+CO_2的双层气流保护TIG焊工艺研究。内层通纯氦避免电极直接接触外层CO_2而氧化烧损,外层添加活性气体CO_2向熔池溶解活性元素氧改变熔池表面张力对流模式,进而增加熔深和焊缝深宽比。研究了外层气体中CO_2含量的变化对电极保护和焊缝形貌的影响。结果表明,在双层气流保护TIG焊工艺下,电极氧化烧损得到有效抑制,焊接效率是传统TIG焊工艺的两倍以上;当焊缝氧含量在0。007 6%~0。012%(质量分数)范围时,表面张力对流由外对流改变为内对流,焊缝形貌迅速由浅宽型变为深窄型。 |
其他语种文摘
|
He and He+CO_2 double shielded TIG welding process was proposed to study the electrode protection and weld shape variations of 0Cr13Ni5Mo low carbon martensite stainless steel used for hydraulic turbine runners.Pure inert gas(He) as inner layer, avoids the electrode directly contacting the outer layer active gas(CO_2) and being oxidized.Addition CO_2 to the outer layer shielding gas provides a surface active element(oxygen) which dissolves into the weld pool to change the Marangoni convection mode and weld shape.The results show that the electrode is successfully protected, and Marangoni convection changes from outward to inward to produce a deep and narrow weld when the weld oxygen content is between 0.007 6%~0.012% in weld metal.The double shielded TIG welding is more than twice the welding efficiency of the conventional TIG welding. |
来源
|
焊接学报
,2011,32(11):49-52 【核心库】
|
关键词
|
电极保护
;
焊缝形貌
;
氧含量
;
表面张力对流
|
地址
|
中国科学院金属研究所, 沈阳材料科学国家重点实验室, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-360X |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:4382145
|
参考文献 共
12
共1页
|
1.
Sahoo P. Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy.
Metallurgical Transactions B,1988,19(6):483-491
|
CSCD被引
56
次
|
|
|
|
2.
Heiple C R. Mechanism for minor element effect on GTA fusion zone geometry.
Welding Journal,1982,61(4):97-104
|
CSCD被引
31
次
|
|
|
|
3.
Leconte S. Effect of fluxes containing oxides on tungsten inert gas welding process.
Science and Technology of Welding and Joining,2006,11(1):43-47
|
CSCD被引
5
次
|
|
|
|
4.
Lu S P. Effect of oxygen content in He- O_2 shielding gas on weld shape in ultra deep penetration TIG.
Science and Technology of Welding and Joining,2007,12(8):689-695
|
CSCD被引
11
次
|
|
|
|
5.
陆善平. 双层气流保护TIG焊接方法.
焊接学报,2010,31(2):21-24
|
CSCD被引
21
次
|
|
|
|
6.
Tanaka M. Influence of shielding gas composition on arc properties in TIG welding.
Science and Technology of Welding and Joining,2008,13(3):225-231
|
CSCD被引
10
次
|
|
|
|
7.
Pitscheneder W. Role of sulfur and processing variables on the temporal evolution of weld pool geometry during multikilowatt laser beam welding of steels.
Welding Journal,1982,75(3):71-80
|
CSCD被引
1
次
|
|
|
|
8.
Zacharia T. Weld pool development during GTA and Laser-beam welding of type-304 stainlesssteel. 1. Theoretical-analysis.
Welding Journal,1989,68(12):499-509
|
CSCD被引
7
次
|
|
|
|
9.
Wang Y. Modeling of the effects of surface - active elements on flow patterns and weld penetration.
Metallurgical and Materials Transactions B,2001,32(1):145-161
|
CSCD被引
20
次
|
|
|
|
10.
Tanaka M. Numerical study of a free-burning argon arc with anode melting.
Plasma Chemistry and Plasma Processing,2003,23(3):585-606
|
CSCD被引
6
次
|
|
|
|
11.
Tanaka M. Numerical study of weld formations for stationary TIG arc in different gaseous atmosphere.
The 56th Annual Assembly of International Institute of Welding,2003:212-217
|
CSCD被引
1
次
|
|
|
|
12.
Lu S P. Effect of oxygen addition to argon shielding gas on GTA wed shape.
The Iron and Steel Institute of Japan International,2003,43(10):1590-1595
|
CSCD被引
5
次
|
|
|
|
|
|