末次冰盛期后格尔木河下切的时空变化及其构造意义
Fluvial Incision Process and Its Tectonic Implications of Golmud River since Last Glaciation Maximum
查看参考文献40篇
文摘
|
格尔木河河谷中发育有四级河流阶地,均形成于末次冰盛期之后。阶地的形成由构造抬升驱动,四级阶地代表的河流下切过程反映了四次阶段性构造抬升。以三岔河和纳赤台为代表的中游河段,四次河流阶段性下切速率分别为16~13kaBP(T4-T3),3.33~9.33mm/a;13~11kaBP(T3-T2),5.5~12mm/a;11~5kaBP(T2-T1),0.33~1mm/a;5kaBP(T1至今),0.6~0.8mm/a,下切速率自T4至T1先增快后减慢。上游小南川河段5kaBP以来的平均下切速率为4mm/a,显著大于三岔河和纳赤台河段,同期河流溯源侵蚀速率也较快,表明小南川局部地区全新世中期抬升强烈,应为西大滩断裂强烈活动所致。受区域性构造活动差异影响,格尔木河河流阶地在局部地区出现变形,其中在三岔河和最老冲积扇扇顶存在两个下切幅度和速度高峰值,而纳赤台河段下切和缓。表明控制昆仑河和野牛沟发育的昆仑河—野牛沟断裂、山前的红石沟断裂自末次冰盛期以来持续活动。其中,昆仑河—野牛沟断裂16~13kaBP活动速率较快,到13~11kaBP达到最快,11kaBP后减慢,与河流中下游整体构造活动趋势一致。 |
其他语种文摘
|
The Golmud River originates from the Kunlun Mountains and drains into the Qaidam Basin on northern Tibetan Plateau.The Golmud River valley has experienced intensive tectonic movements since the Last Glacial Maximum,which deeply influenced the geomorphologic evolution of the river.In addition,well-developed fluvial terraces and sediments are preserved in the river valley and provide vital information for studying the environmental evolution in detail.Four terraces developed in the river valley since the Last Glacial Maximum,which may be responses to four tectonic uplift events.In Nachitai and Sanchahe sections,the incision rates of the four terraces are 9.33-3.33 mm/a(T4-T3,16-13 ka BP),12-5.5 mm/a(T3-T2,13-11 ka BP),1.0-0.33 mm/a(T2-T1,11-5 ka BP)and 0.8-0.6 mm/a(T1,since 5 ka BP),respectively.The incision rate increased from 16-11 ka BP,and then it has been decreasing since 11 ka,which implies the tectonic uplift processes.The average incision rate of Xiaonanchuan since 5 ka BP is 4 mm/a.The rate is larger than that of Sanchahe and Nachitai,indicating that the tectonic uplift is more intensive in this region. The longitudinal section of the terraces indicates that the rates and depths of incision were the largest in Sanchahe section(62 m,3.88 mm/a)and on the piedmont(46 m,2.88 mm/a), while it was mild in Nachitai section(26 m,1.61 mm/a).The deformation of the terraces suggests that the Yeniugou fault at Sanchahe and the Hongshigou fault on the piedmont have been active since the Last Glacial.The Kunlun river fault is a thrust fault,and its uplift rates started to rise at 16-13 ka BP,and peaked during 13-11 ka BP,and decreased after 11 ka BP. |
来源
|
地理学报
,2011,66(11):1540-1550 【核心库】
|
关键词
|
格尔木河
;
河流阶地
;
下切速率
;
构造抬升
|
地址
|
1.
北京大学城市与环境学院, 北京, 100871
2.
Department of Geography, University of Tennessee,USA, USA, Knoxville, 37996
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
地球物理学 |
基金
|
国家自然科学基金项目
;
国家973计划
|
文献收藏号
|
CSCD:4365559
|
参考文献 共
40
共2页
|
1.
Bridgland D R. River terrace systems in north-west Europe: An archive of environmental change, uplift and early human occupation.
Quaternary Science Reviews,2000,19:1293-1303
|
CSCD被引
38
次
|
|
|
|
2.
Bridgland D. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon.
Geomorphology,2008,98:285-315
|
CSCD被引
40
次
|
|
|
|
3.
Vandenberghe J. Climate forcing of fluvial system development: An evolution of ideas.
Quaternary Science Reviews,2003,22:2053-2060
|
CSCD被引
24
次
|
|
|
|
4.
杨景春.
地貌学原理,2001
|
CSCD被引
38
次
|
|
|
|
5.
李吉均. 晚新生代黄河上游地貌演化与青藏高原隆起.
中国科学:D辑,1996,26(4):316-322
|
CSCD被引
300
次
|
|
|
|
6.
杨景春. 祁连山北麓河流阶地与新构造演化.
第四纪研究,1998,18(3):229-237
|
CSCD被引
58
次
|
|
|
|
7.
顾兆炎. 怒江峡谷构造地貌的演化:阶地宇宙成因核素定年的初步结果.
第四纪研究,2006,26(2):293-294
|
CSCD被引
25
次
|
|
|
|
8.
邱维理. 山西河曲黄河阶地序列初步研究.
第四纪研究,2008,28(4):544-552
|
CSCD被引
24
次
|
|
|
|
9.
Pan B. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: Evidence from a 1.24 Ma terrace record near Lanzhou, China.
Quaternary Science Reviews,2009,28(27/28):3281-3290
|
CSCD被引
20
次
|
|
|
|
10.
Seong Y B. Rates of fluvial bedrock incision within an actively uplifting orogen: Central Karakoram Mountains, northern Pakistan.
Geomorphology,2008,97:274-286
|
CSCD被引
5
次
|
|
|
|
11.
Owen L A. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation.
Quaternary International,2006,154/155:73-86
|
CSCD被引
39
次
|
|
|
|
12.
陈艺鑫. 末次冰期以来格尔木河填充一切割及驱动机制初探.
第四纪研究,2011,31(2):347-359
|
CSCD被引
16
次
|
|
|
|
13.
Wu Y. Quaternary geomorphological evolution of the Kunlun Pass area and uplift of the Qinghai-Xizang (Tibet) Plateau.
Geomorphology,2001,36:203-216
|
CSCD被引
13
次
|
|
|
|
14.
崔之久. 关于"昆仑-黄河运动".
中国科学:D辑,1998,28(1):53-59
|
CSCD被引
116
次
|
|
|
|
15.
李长安. 东昆仑山构造隆升与水系演化及其发展趋势.
科学通报,1999,44(2):211-213
|
CSCD被引
33
次
|
|
|
|
16.
王岸. 东昆仑山东段北坡河流阶地发育及其与构造隆升的关系.
地球科学:中国地质大学学报,2003,28(6):675-679
|
CSCD被引
21
次
|
|
|
|
17.
曹凯. 东昆仑山昆仑河纵剖面形貌分析及构造涵义.
地球科学:中国地质大学学报,2007,32(5):713-721
|
CSCD被引
19
次
|
|
|
|
18.
Van der Woerd J. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from ~(26)Al, ~(10)Be, and ~(14)C dating of riser offsets, and climatic origin of the regional morphology.
Geophysical Journal International,2002,148:356-388
|
CSCD被引
123
次
|
|
|
|
19.
吴珍汉. 东昆仑南部西大滩断裂的地震鼓包及形成时代.
地质论评,2006,52(1):15-24
|
CSCD被引
10
次
|
|
|
|
20.
王多杰. 库赛湖一玛曲断裂带东、西大滩段全新世活动特征及古地震的研究.
内陆地震,1992,6(2):158-166
|
CSCD被引
4
次
|
|
|
|
|