与花岗质岩浆系统有关的石英脉型钨矿和斑岩型铜矿成矿流体特征比较
Comparison of characteristics of ore forming fluids between quartz-vein tungsten deposits and porphyry copper deposits associated with granitic rocks
查看参考文献72篇
文摘
|
文中对比了与S型花岗岩有关的石英脉型钨矿和与I型(及少数A型)花岗岩类有关的斑岩型铜矿床的成矿流体特征。它们的共同点在于成矿流体都由岩浆流体演化而来, 在后期逐渐有大气降水的加入。差异性在于:(1)石英脉型钨矿成矿流体主要属于中-中高温、中-中低盐度的NaCl-H_2O±CO_2体系, 而斑岩型铜矿属于中高-高温、高盐度的NaCl-H_2O-KCl±CO_2体系;(2)在流体演化过程中, 流体沸腾和相分离作用在斑岩铜矿中普遍存在, 且对金属元素的运移和沉淀起着重要的作用, 而在石英脉型钨矿床中则较少见, 引起后者沉淀的主要因素是流体混合;(3)在流体体系中, 钨主要以O、Na配合物形式迁移, 铜则与Cl或S形成配合物迁移, 这些元素在流体中的存在与否在一定意义上与是否能成矿以及成矿的种类互相制约。 |
其他语种文摘
|
We reviewed the characteristics of ore forming fluids of quartz-vein tungsten deposits associated with S type granites and porphyry copper deposits associated with I-type(some associated with A-type)granitic rocks. The two fluid systems are similar in that both of them are derived from magmatic evolution, with involvement of meteoric water in the late stage.On the other hand, they are different in the following aspects:(1)the ore forming fluids of quartz-vein tungsten deposits belong to the H_2O-NaCl±CO_2system with moderate-high temperature and moderate-low salinity, whereas those associated with porphyry copper deposits belong to the H_2O-NaCl-KCl±CO_2system with high temperature and high salinity;(2)boiling and phase-separation are common in porphyry copper deposits and may have played important roles for the transport and deposition of Cu, but are uncommon in quartz-vein tungsten deposits, in which fluid mixing may have played a more important role;(3)W is more associated with O and Na in fluid systems while Cu is with Cl and S, so the formation and the type of deposits depend in part on availability of these elements in the fluids. |
来源
|
地学前缘
,2011,18(5):121-131 【核心库】
|
关键词
|
花岗质岩石
;
成矿流体
;
石英脉型钨矿
;
斑岩型铜矿
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-2321 |
学科
|
地质学 |
基金
|
国土资源部公益性行业科研专项经费项目
;
国家973计划
|
文献收藏号
|
CSCD:4343849
|
参考文献 共
72
共4页
|
1.
Hedenquist W J. The role of magmas in the formation of hydrothermal ore deposits.
Nature,1994,370:519-527
|
CSCD被引
1
次
|
|
|
|
2.
华仁民. 流体在金属矿床形成过程中的作用和意义.
南京大学学报: 地球科学,1993,5(3):351-360
|
CSCD被引
8
次
|
|
|
|
3.
Kesler S E. Ore-forming fluids.
Elements,2005,1(1):13-18
|
CSCD被引
26
次
|
|
|
|
4.
Sial A N.
Granite-Related Ore Deposits,2011:1-5
|
CSCD被引
1
次
|
|
|
|
5.
Giuliani G. Fluid inclusion study of Xi Huashan tungsten deposit in the southern Jiangxi Province, China.
Mineralium Deposita,1988,23(1):24-33
|
CSCD被引
11
次
|
|
|
|
6.
Ni P. Infrared fluid inclusion microthermometry on coexisting wolframite and quartz from Dajishan tungsten deposit, Jiangxi Province, China.
Goldschmidt Conference Abstracts,2006:A444
|
CSCD被引
1
次
|
|
|
|
7.
Wang X. Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province: Evidence from helium and argon isotopes.
Chinese Science Bulletin,2010,55(7):628-634
|
CSCD被引
1
次
|
|
|
|
8.
Lu H Z. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China.
Economic Geology and the Bulletin of the Society of Economic Geologists,2003,98(5):955-974
|
CSCD被引
3
次
|
|
|
|
9.
李献华. 幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约.
中国科学: D辑,2009,39(7):872-887
|
CSCD被引
85
次
|
|
|
|
10.
Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au)deposit formation.
Economic Geology and the Bulletin of the Society of Economic Geologists,2003,98(8):1515-1533
|
CSCD被引
267
次
|
|
|
|
11.
Klemm L M. Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids.
Economic Geology,2007,102(6):1021-1045
|
CSCD被引
41
次
|
|
|
|
12.
Halter W. Magma evolution and the formation of porphyry Cu-Au ore fluids: Evidence from silicate and sulfide melt inclusions.
Mineralium Deposita,2005,39(8):845-863
|
CSCD被引
40
次
|
|
|
|
13.
Ballard J R. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP.
Geology,2001,29(5):383-386
|
CSCD被引
105
次
|
|
|
|
14.
Kyle J R. High resolution X-ray computed tomography studies of Grasberg porphyry Cu-Au ores, Papua, Indonesia.
Mineralium Deposita,2008,43(5):519-532
|
CSCD被引
5
次
|
|
|
|
15.
侯增谦. 初论大陆环境斑岩铜矿.
现代地质,2007,21(2):332-351
|
CSCD被引
158
次
|
|
|
|
16.
Hou Z Q. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet.
Economic Geology and the Bulletin of the Society of Economic Geologists,2003,98(1):125-145
|
CSCD被引
4
次
|
|
|
|
17.
Peng Z. The Machangqing copper-molybdenum deposits, Yunnan, China: An example of Himalayan porphyry-hosted Cu-Mo mineralization.
Mineralogy and Petrology,1998,63(1/2):95-117
|
CSCD被引
7
次
|
|
|
|
18.
毕献武. 姚安和马厂箐富碱侵入岩体的地球化学特征.
岩石学报,2005,21(1):113-124
|
CSCD被引
88
次
|
|
|
|
19.
Gu X X. Himalayan magmatism and porphyry copper-molybdenum mineralization in the Yulong ore belt, East Tibet.
Mineralogy and Petrology,2003,78(1/2):1-20
|
CSCD被引
16
次
|
|
|
|
20.
Harris A C. Bajo de la Alumbrera copper-gold deposit: Stable isotope evidence for a porphyryrelated hydrothermal system dominated by magmatic aqueous fluids.
Economic Geology,2005,100(5):863-886
|
CSCD被引
14
次
|
|
|
|
|