红外显微镜红外光强度对测定不透明矿物中流体包裹体盐度的影响:以辉锑矿为例
A Study on the Influence of Infrared Light Source Intensity on Salinity of Fluid Inclusion in Opaque Mineral by Using Infrared Microthermometry:In the Case of Stibnite
查看参考文献22篇
文摘
|
红外显微镜是研究不透明矿物中流体包裹体的重要手段,但红外光发热可能对不透明矿物中流体包裹体的盐度和均一温度测定有影响。本文以辉锑矿中流体包裹体为例,系统评价了红外光强度对测定辉锑矿中流体包裹体冰点的影响。结果表明,红外光强度对辉锑矿中流体包裹体的冰点测定有显著影响,导致过高估计流体包裹体的盐度,并提出了解决这一问题的方法。 |
其他语种文摘
|
Infrared microthermometry is useful for determining salinity and homogenization temperature of fluid inclusions in opaque minerals.Previous study showed that temperature of phase changes of fluid inclusion in opaque minerals varied with the infrared light source intensity,resulting in an overestimate of fluid salinities and an underestimate of homogenization temperatures.In this study,we evaluated the influence of infrared light source intensity on salinity of fluid inclusions in stibnite.The results reveal that the infrared light source intensity affects notably salinities of fluid inclusions in stibnite,resulting in an overestimate of fluid salinities. |
来源
|
矿物学报
,2011,31(3):366-371 【核心库】
|
关键词
|
辉锑矿
;
流体包裹体盐度
;
红外光强度
;
红外显微镜
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
贵州省项目
|
文献收藏号
|
CSCD:4327421
|
参考文献 共
22
共2页
|
1.
Roedder E. Fluid inclusions.
Reviews in Mineralogy 12,1984:644
|
CSCD被引
3
次
|
|
|
|
2.
Campbell A R. Infrared fluid inclusion microthermometry on coexisting wolframite and quartz.
Economic Geology,1987,82(6):1640-1645
|
CSCD被引
35
次
|
|
|
|
3.
Moritz R. Fluid salinities obtained by infrared microthemometry of opaque minerals:Implications for ore deposit modeling-A note of caution.
Journal Geochemical Exploration,2006,89:284-287
|
CSCD被引
15
次
|
|
|
|
4.
Campbell A R. Internal features of ore minerals seen with the infrared microscope.
EconomicGeology,1984,79(6):1387-1392
|
CSCD被引
19
次
|
|
|
|
5.
Campbell A R. Observation of fluid Inclusions in Wolframite from Panasqueira,Portugal.
PortugalBull Minéral,1988,111:252-256
|
CSCD被引
1
次
|
|
|
|
6.
Campbell A R. Comparison of fluid inclusion in coexisting(cogenetic?)wolframite,cassiterite,and quartz from Sr.Michael'smount and Cligga Head,Cornwall,England.
Geochimica et Cosmochimica Acta,1990,54(3):673-681
|
CSCD被引
36
次
|
|
|
|
7.
Lüders V. Possibilities and limits of infrared microscopy applied to studies of fluid inclusions in sulfides and other opaque minerals.
Proceedings of Pan-American Conference on Research on Fluid Inclusions(PACROFI)Ⅵ,1996:78-80
|
CSCD被引
1
次
|
|
|
|
8.
Lüders V. Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals(wolframite,stibnite,boutnonite):Metallogenic implications.
Economic Geology,1996,91(8):1462-1468
|
CSCD被引
2
次
|
|
|
|
9.
Ni P. Infrared fluid inclusion microthermometry on coexisting wolframite and quartz from Dajishantungsten deposit,Jiangxi province,China.
Geochimica et Cosmochimica Acta,2006,70(18)
|
CSCD被引
1
次
|
|
|
|
10.
Mancano D P. Microthermometry of enargite-hosted fluid inclusions from the Lepanto,Philippines,high-sulfidation Cu-Audeposit.
Geochimica et Cosmochimica Acta,1995,59:3909-3916
|
CSCD被引
23
次
|
|
|
|
11.
Moritz R. Microthermometry of enargite from the upper Cretaceous high-sulfidation Au-Cu Chelopech deposit,Bulgaria.
PACROFI-Pan-American Conference on Research on Fluid Inclusions Program and Abstracts,2002,8:73-74
|
CSCD被引
1
次
|
|
|
|
12.
Kouzmanov K. Genesis of high-sulfidation vinciennite-bearing Cu-As-Sn(<Au)assemblage from theRadka epithermal copper deposit,Bulgaria:Evidence from mineralogy infrared microthermometry of enargite,Can.
Mineral,2004,42(5):1501-1521
|
CSCD被引
1
次
|
|
|
|
13.
Richards J. Observations of zoning and fluid inclusions in pyrite using a transmitted infrared light microscope(λ≤1.9μm).
Economic Geology,1993,88:716-723
|
CSCD被引
11
次
|
|
|
|
14.
Lüders V. Possibilities and limits of infrared light microthermometry applied to studies of pyrite-hosted fluid inclusions.
Chemical Geology,1999,154:169-178
|
CSCD被引
5
次
|
|
|
|
15.
Lindaas S E. Near-infrared observation and microthermometry of pyrite-hosted fluid inclusions.
Ecoonomic Geology,2002,97(3):603-618
|
CSCD被引
13
次
|
|
|
|
16.
Kouzmanov K. Morphology,origin and infrared microthermometry of fluid inclusions in pyritefrom the Radka epithermal copper deposit,Srednogorie Zone,Bulgaria.
Mineralium Deposita,2002,37:599-613
|
CSCD被引
14
次
|
|
|
|
17.
Rosiere C A. The origin of hematite in high-grade iron ores based on infrared microscopy and fluid inclusion studies:The exampleof the Conceicao mine,Quadrilatero Ferrifero,Brazil.
Economic Geology,2004,99(3):611-624
|
CSCD被引
13
次
|
|
|
|
18.
Lüders V. Fluid inclusion studies in cogenetic hematite,hausmannite,and gangue minerals from high-grademanganese ores in the Kalahari manganese field,South Africa.
Economic Geology,1999,94:589-596
|
CSCD被引
2
次
|
|
|
|
19.
Rios F J. Combined investigations of fluid inclusions in opaque ore minerals by NIR/SWIR microscopy and microthermometry and synchrontron radiation X-ray fluorescence.
Appl Geochem,2006,21:813-819
|
CSCD被引
8
次
|
|
|
|
20.
Bailly L. Fluid inclusion study of stibnite using infrared microscopy;An example from the Brouzilsantimony deposit(Vendée,Armorican Massif,France).
Economic Geology,2000,95:221-226
|
CSCD被引
19
次
|
|
|
|
|