帮助 关于我们

返回检索结果

Constant Barrier Strategies in a Two-state Markov-modulated Dual Risk Model

查看参考文献15篇

文摘 In this paper, we consider the dividend problem in a two-state Markov-modulated dual risk model, in which the gain arrivals, gain sizes and expenses are influenced by a Markov process. A system of integrodifferential equations for the expected value of the discounted dividends until ruin is derived. In the case of exponential gain sizes, the equations are solved and the best barrier is obtained via numerical example. Finally, using numerical example, we compare the best barrier and the expected discounted dividends in the two-state Markov-modulated dual risk model with those in an associated averaged compound Poisson risk model. Numerical results suggest that one could use the results of the associated averaged compound Poisson risk model to approximate those for the two-state Markov-modulated dual risk model.
来源 Acta Mathematicae Applicatae Sinica-English Series ,2011,27(4):679-690 【核心库】
DOI 10.1007/s10255-011-0113-7
关键词 Dual risk model ; Markov-modulated risk model ; barrier strategy
地址

School of Mathematics and Statistics, Wuhan University, Wuhan, 430072

语种 英文
文献类型 研究性论文
ISSN 0168-9673
学科 数学
基金 国家自然科学基金 ;  国家教育部项目
文献收藏号 CSCD:4323986

参考文献 共 15 共1页

1.  Avanzi, B. Optimal dividends in the dual model. Insurance: Mathematics and Economics,2007,41(1):111-123 CSCD被引 28    
2.  Cheung, E.C.K. Dividend Moments in the Dual Model : Exact and Approximate Approaches. ASTIN Bulletin,2008,38(2):399-422 CSCD被引 1    
3.  Gerber, H.U. Optimal dividends with incomplete information in the dual model. Insurance: Mathematics and Economics,2008,42:243-254 CSCD被引 8    
4.  Avanzi, B. Optimal dividends in the dual model with diffusion. ASTIN Bulletin,2008,38(2):653-667 CSCD被引 14    
5.  Ng, A.C.Y. On a dual model with a dividend threshold. Insurance: Mathematics and Economics,2009,44:315-324 CSCD被引 17    
6.  Asmussen, S. Risk theory in a Markovian environment. Scandinavian Actuarial Journal,1989,2:69-100 CSCD被引 11    
7.  Reinhard, J.M. On a class of Semi-Markov risk models obtained as classical risk models in a Markovian environment. Austin Bulletin,1984,14:23-43 CSCD被引 1    
8.  Reinhard, J.M. On the distribution of the surplus prior to ruin in a discrete Semi-Markov risk model. Austin Bulletin,2001,31:255-273 CSCD被引 1    
9.  Bduerle, N. Some results about the expected ruin time in Markov-modulated risk models. Insurance: Mathematics and Economics,1996,18:119-127 CSCD被引 1    
10.  Schmidli, H. Estimation of the Lundberg coefficient for a Markov modulated risk model. Scandinavian Actuarial Journal,1997,1:48-57 CSCD被引 1    
11.  Snoussi, M. The severity of ruin in Markov-modulated risk models. Schweiz. Aktuarver. Mitt,2002,1:31-43 CSCD被引 1    
12.  Lu, Y. On the Probability of Ruin in a Markov-modulated Risk Model. Insurance: Mathematics and Economics,2005,37(3):522-532 CSCD被引 10    
13.  Li, S. Moments of the dividend payments and related problems in a Markov-modulated risk model. North American Actuarial Journal,2007,11(2):65-76 CSCD被引 1    
14.  Zhu, J. Ruin theory for a Markov regime-switching model under a threshold dividend strategy. Insurance: Mathematics and Economics,2008,42(1):311-318 CSCD被引 5    
15.  Asmussen, S. Ruin Probabilities,2000 CSCD被引 113    
引证文献 2

1 刘东海 常数分红界下带扰动的马氏调制对偶风险模型 高校应用数学学报. A辑,2014,29(2):159-170
CSCD被引 0 次

2 叶传秀 马尔科夫机制转换谱正Levy风险模型中的最优分红策略 应用概率统计,2020,36(1):71-85
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号