最优分割尺度下的多层次遥感地物分类实验分析
Optimal Segmentation Scale Selection and Evaluation for Multi-layer Image Recognition and Classification
查看参考文献18篇
文摘
|
为了快速、准确地提取我国海岸带地区土地利用及其变化信息,选择高分辨率遥感影像作为数据源,提出了最优分割尺度下的遥感多层次地物识别分类方法。首先,通过改进的局部方差法进行最优分割尺度的确定,建立影像中各对象的方差均值与变化率随分割尺度变化曲线,确定方差均值的峰值,以变化率开始呈现下降趋势时所对应的分割值为最优分割尺度参考;然后,针对地物分类特征差异选取各自适宜的分割尺度,建立多层次地物特征表达与规则,最后,实现最优尺度分割选择下的遥感多层次识别分类,即实现较大尺度下分割形成父对象,而较小尺度下分割出其若干子对象的目标,提出了快速、自动化获取土地利用/覆盖图的策略流程。本文选取了广东省珠海市海岸带地区作为实验区,利用多层次遥感分类方法进行地物识别分类。结果表明,其目视效果以及总体精度、Kappa系数,均优于传统方法和单一分割尺度下的影像分类方法。 |
其他语种文摘
|
With the rapid increase of remote sensing image storage,it becomes more critical for the quick and effective information extraction from remote sensing imagery.As a widely-used method,object-based image analysis(OBIA)has been rapidly developed from the beginning of this century,but the automatic procedure for land use mapping is still problematic facing with geographical complexity.Regarding to the complex feature contents in the imagery of costal zones,this paper presents a method of optimal segmentation scale extraction and an object-based multi-layer classification procedure.The proposed approach mainly contains three parts:segmentation,optimal scale generation and multi-level classification.First,we select the high resolution images as the data source,segment the imagery with series of scale parameters.Then choose the appropriate scales with the curve of local variance(LV)variation.Variation in heterogeneity is explored by evaluating LV plotted against the corresponding scale in order to get different types of the landuse/cover with their own extraction scales.Finally,we classify the image with multi-features,including spectral,shape,texture and spatial relationship.This paper selects the coastal area of Zhuhai,Guangdong Province as the experiment zone,the classification results show that overall accuracy and Kappa index of the new method are better than those of the traditional pixel-based classifiers and object-oriented classifiers based on the single-level segmentation. |
来源
|
地球信息科学学报
,2011,13(3):409-417 【核心库】
|
关键词
|
局部方差
;
最优分割尺度
;
多层次分类
;
精度评价
|
地址
|
1.
中国科学院地理科学与资源研究所, 北京, 100101
2.
中国科学院研究生院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
测绘学 |
基金
|
国家863计划
;
国家自然科学基金
|
文献收藏号
|
CSCD:4222615
|
参考文献 共
18
共1页
|
1.
Lobo A. Classification of Mediterranean Crops with Multisensor Data:Per-pixel versus Per-object Statistics and Image Segmentation.
International Journal of Remote Sensing,1996,17:2358-2400
|
CSCD被引
37
次
|
|
|
|
2.
Blaschke T. Object-oriented Image Analysis and Scale-space:Theory and Methods for Modeling and Evaluating Multiscale Landscape Structures.
International Archives of Photogrammetry and Remote Sensing,2000,34(4):22-29
|
CSCD被引
1
次
|
|
|
|
3.
Blaschke T. Object Based Image Analysis for Remote Sensing.
ISPRS Journal of Photogrammetry and Remote Sensing,2010,65:2-16
|
CSCD被引
215
次
|
|
|
|
4.
Ursula C B. Multi-resolution,Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information.
ISPRS Journal of Photogrammetry and Remote Sensing,2004,58:219-239
|
CSCD被引
1
次
|
|
|
|
5.
周成虎.
高分辨率卫星遥感影像地学计算,2009:174-186
|
CSCD被引
2
次
|
|
|
|
6.
于欢. 面向对象遥感影像分类的最优分割尺度选择研究.
中国图象图形学报,2010,15(2):352-360
|
CSCD被引
50
次
|
|
|
|
7.
何敏. 面向对象的最优分割尺度计算模型.
大地测量与地球动力学,2009,29(1):106-109
|
CSCD被引
32
次
|
|
|
|
8.
Lucian D. ESP:A Tool to Estimate Scale Parameter for Multi-resolution Image Segmentation of Remotely Sensed Data.
International Journal of Geographical Information Science,2010,24(6):859-871
|
CSCD被引
109
次
|
|
|
|
9.
Kim M. Estimation of Optimal Image Object Size for the Segmentation of Forest Stands with Multispectral IKONOS Imagery.
Object-Based Image Analysis,2008:291-307
|
CSCD被引
8
次
|
|
|
|
10.
黄慧萍.
面向对象影像分析中的尺度问题研究,2003:124-126
|
CSCD被引
1
次
|
|
|
|
11.
陈建裕. 高分辨率海岸带遥感影像中简单地物的最优分割问题.
中国科学. D,2006,36(11):1044-1051
|
CSCD被引
11
次
|
|
|
|
12.
Hay G J. Geographic Object-Based Image Analysis(GEOBIA):A New Name for a New Discipline.
Object-Based Image Analysis,2008:75-89
|
CSCD被引
3
次
|
|
|
|
13.
Woodcock C E. The Factor of Scale in Remote Sensing.
Remote Sensing of Environment,1987(21):311-332
|
CSCD被引
109
次
|
|
|
|
14.
龚剑明. 基于遥感多特征组合的冰川及其相关地表类型信息提取.
地球信息科学学报,2009,11(6):765-771
|
CSCD被引
7
次
|
|
|
|
15.
Burnett C. A Multi-scale Segmentation/object Relationship Modeling Methodology for Landscape Analysis.
Ecological Modeling,2003,168:233-249
|
CSCD被引
30
次
|
|
|
|
16.
Lang S. Object-basedMapping and Object-relationship Modeling for Land Use Classes and Habitats.
Photogrammetrie,Fernerkundung,Geoinformation,2006,1:5-18
|
CSCD被引
1
次
|
|
|
|
17.
Baatz M. Multiresolution Segmentation:An Optimization Approach for High Quality Multi-Scale Image Segmentation.
Angewandte Geographische Information Sverarbeitung,2000(12):12-23
|
CSCD被引
8
次
|
|
|
|
18.
刘旭拢. 遥感图像分类精度的点、群样本检验与评估.
遥感学报,2006,10(3):366-373
|
CSCD被引
29
次
|
|
|
|
|