锑矿区水体水环境锑污染及硫同位素示踪研究
Antimony Pollution and Sulfur Isotope Study in the Waters of an Antimony Mine area
查看参考文献23篇
文摘
|
本文系统研究了贵州省半坡锑矿区水环境锑污染现状,用硫同位素指示采矿活动对矿区水体的影响,以查明锑矿区水环境中Sb的释放迁移过程和水污染程度。研究发现,矿区水体中Sb和SO42-含量分别高达1377μg/L和1926 mg/L;岔河下游近10 km处仍保持较高水平(182.5μg/L Sb和59.8 mg/L SO42-)。岔河水体中,δ34S-Sb、δ34S-SO42-和Sb-SO42-间均具显著正相关,相关系数分别为r=0.68(p<0.05)、r=0.89(p<0.01)、r=0.72(p<0.05)。表明岔河水体中,δ34S和SO42-能很好地指示矿业活动引起的Sb污染程度和扩散范围。根据同位素质量平衡原理估算,发现矿区下游水体中的硫主要来自矿山,表明矿区下游水体污染受采矿活动影响显著。 |
其他语种文摘
|
This study investigated the pollution state of antimony in the waters of an antimony mine located in Banpo,Guizhou Province,and traced the pollutants using sulfur isotope.The main goals of this study are to clear the geochemical progresses controlling the fate and the transfer of antimony and to better understand the current pollution state of the rivers in this antimony mine area.The results showed that the waters are suffering from serious pollution with Sb and SO2-4 concentrations being up to 1377 μg/L and 1926 mg/L,respectively.The downstream water of the Chahe River,10 km away from the mine area,still contains high concentrations of Sb and SO2-4.In Chahe River,δ34S-Sb,δ34S-SO2-4 and Sb-SO2-4 are remarkably positively correlated,the correlation coefficients are r=0.68(p<0.05),r=0.89(p<0.01)and r=0.72(p<0.05),respectively.These positive correlations suggest that δ34S in the dissolved sulfate and the concentration of SO2-4 can well reflect the water pollution state and the diffusion distance of antimony in the Chahe River.According to the calculation of isotope mass balance,the sulfur in the downstream of the mine area are mainly form antimony deposit,which implies that the water quality in the mine area is significantly affected by mining activities. |
来源
|
矿物岩石地球化学通报
,2011,30(2):135-141 【扩展库】
|
关键词
|
矿山
;
锑
;
水污染
;
硫同位素
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学;环境科学基础理论 |
基金
|
中国科学院知识创新工程重要方向项目
;
国家973计划
;
国家自然科学基金资助项目
;
贵州省项目
|
文献收藏号
|
CSCD:4216047
|
参考文献 共
23
共2页
|
1.
Shotyk W. Antimony:Global environmental contaminant.
J.Environ.Monitor.,2005,7(12):1135-1136
|
CSCD被引
19
次
|
|
|
|
2.
Maher WA. Antimony in the Environment-the New Global Puzzle.
Environ.Chem.,2009,6:93-94
|
CSCD被引
6
次
|
|
|
|
3.
Filella M. Antimony in the Environment:A Review focused on Natural Waters:I.Occurrence.
Earth Sci.Rev.,2002,57(1/2):125-176
|
CSCD被引
101
次
|
|
|
|
4.
Ashley P M. Environmental mobility of antimony around Mesothermal Stibnite Deposits,New South Wales,Australia and Southern New Zealand.
J.Geochem.Explor.,2003,77(1):1-14
|
CSCD被引
18
次
|
|
|
|
5.
宁增平. 锑矿区酸性岩排水产生潜力预测研究.
地球与环境,2009,37(3):249-253
|
CSCD被引
3
次
|
|
|
|
6.
Robinson B W. Discrimination of Sulfur sources in pristine and polluted New Zealand River catchments using stable isotopes.
Appl.Geochem.,1997,12(3):305-319
|
CSCD被引
5
次
|
|
|
|
7.
Stüben D. Environmental monitoring of heavy metals and arsenic from Ag-Pb-Zn mining.
Environ.Monit.Assess.,2001,70(1):181-200
|
CSCD被引
2
次
|
|
|
|
8.
Sueker J K. Isotope applications in environmental investigations partⅡ:Groundwater age dating and recharge processes,and provenance of sulfur and methane.
Remed.J.,2003,13(2):71-90
|
CSCD被引
1
次
|
|
|
|
9.
Moncaster S J. Migration and attenuation of agrochemical pollutants:insights fromisotopic analysis of groundwater sulphate.
J.Contam.Hydrol.,2000,43(2):147-163
|
CSCD被引
10
次
|
|
|
|
10.
Gray N F. Field assessment of acid mine drainage contamination in surface and ground water.
Environ.Geol.,1996,27(4):358-361
|
CSCD被引
5
次
|
|
|
|
11.
Thomas P. δ34S Isotope values of dissolved sulfate(SO2-4)as a tracer for battery acid(H2SO4)contamination in groundwater.
Environ.Geol.,2005,47(2):215-224
|
CSCD被引
3
次
|
|
|
|
12.
ǒstlund P. Lead and sulphur isotope dilution during dispersion from the falun mining area.
J.Geochem.Explor.,1995,52(1/2):91-95
|
CSCD被引
1
次
|
|
|
|
13.
吴攀. 矿山环境地表水系的硫同位素研究——以贵州赫章后河为例.
矿物岩石地球化学通报,2007,26(3):224-227
|
CSCD被引
5
次
|
|
|
|
14.
乌家达. 中国锑矿床(A).中国矿床编辑委员会.
中国矿床(上册),1989:347-413
|
CSCD被引
1
次
|
|
|
|
15.
李俊. 贵州半坡锑矿床成矿流体地球化学.
昆明理工大学学报(理工版),1999,24(1):73-79
|
CSCD被引
4
次
|
|
|
|
16.
朱静. 湖南锡矿山周边水体的环境特征.
环境科学学报,2009,29(3):655-661
|
CSCD被引
25
次
|
|
|
|
17.
Wilson N J. Contributions of discharges from a historic antimony mine to metalloid content of river waters,Marlborough,New Zealand.
J.Geochem.Explor.,2004,84(3):127-139
|
CSCD被引
6
次
|
|
|
|
18.
Casiot C. Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago(upper Orb basin,France).
Appl.Geochem.,2007,22(4):788-798
|
CSCD被引
20
次
|
|
|
|
19.
Filella M. Antimony in the environment:A review focused on natural waters:Ⅱ.Relevant solution chemistry.
Earth Sci.Rev.,2002,59(1/4):265-285
|
CSCD被引
46
次
|
|
|
|
20.
Zhang G. Mobilisation and transport of arsenic and antimony in the adjacent environment of Yata gold mine,Guizhou Province,China.
J.Environ.Monitor.,2009,11:1570-1578
|
CSCD被引
2
次
|
|
|
|
|