地表自然过程排汞研究进展及展望
Earth surface natural mercury emission:Research progress and perspective.
查看参考文献98篇
文摘
|
地表自然过程排汞包括了自然源排汞过程和先前排放的汞沉降到地表后的再排放过程。已有证据显示,地表自然过程向大气的排汞量可能远大于人为活动直接向大气的排汞量。准确确定自然过程汞的释放通量,不仅对正确评价目前减少人为活动向大气排汞对全球环境汞污染的影响程度具有重要的意义,而且可为全球大气汞的减排政策的制定提供重要科学理论依据。本综述通过对国内外地表自然排放源相关文献的调研分析发现:由于缺少可靠的观测技术、对地表与大气间汞交换过程和机理的准确认识及大气汞沉降对地表自然排汞过程影响的认识还不清楚,因此目前还难以准确估算地表自然过程向大气的排汞量。近年来,随着技术手段的进步,已具备了开展地表自然排汞及先前排汞沉降后的再释放过程、机理和通量研究的可行性。地表自然过程排汞的研究将是汞的生物地球化学循环演化研究领域的前沿之一。 |
其他语种文摘
|
Earth surface natural mercury (Hg)emission includes the Hg emission from natural sources and the re-emission from previously deposited Hg.It was demonstrated that the total amount of natural Hg emission from earth surface could be far larger than that of the direct emission from human activities.It is of great importance to quantify the natural Hg emission,not only for the evaluation of the effects of reducing anthropogenic Hg emission on the global environment,but also for providing guidance on the policy-making in global Hg-reduction strategy.Due to the lack of reliable methodologies in quantifying the Hg emission from natural sources,we still don’t have a clear understanding about the processes and mechanisms of Hg exchange between earth surface and atmosphere as well as the effects of atmospheric Hg deposition on the processes of earth surface natural Hg emission,and thereby,we are hard to accurately quantify the Hg emission from natural sources.However,with the development of new technologies,we have the feasibility to study the processes,mechanisms,and fluxes of Hg emission from natural sources.To quantify the Hg emission from natural sources would be one of the research frontiers about the biogeochemical cycling of Hg in the environment. |
来源
|
生态学杂志
,2011,30(5):845-856 【核心库】
|
关键词
|
汞
;
自然来源
;
交换通量
;
微气象方法
;
汞同位素示踪
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
2.
Department of Civil Engineering,Lamar University, USA, Beaumont, TX77710-0024
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4890 |
学科
|
水产、渔业 |
基金
|
国家自然科学基金
;
国家863计划
|
文献收藏号
|
CSCD:4205867
|
参考文献 共
98
共5页
|
1.
Amyot M. Formation and evasion of dissolved gaseous mercury in large enclosures amended with(HgCl2)-Hg-200..
Atmospheric Environment,2004,38:4279-4289
|
CSCD被引
2
次
|
|
|
|
2.
Babiarz CL. A hypolimnetic mass balance of mercury from a dimictic lake:Results from the METAALICUS project..
Journal De Physique IV,2003,107:83-86
|
CSCD被引
1
次
|
|
|
|
3.
Bahlmann E. Influence of solar radiation on mercury emission fluxes from soils..
RMZ Materials and Geoenvironment,2004,51:787-790
|
CSCD被引
1
次
|
|
|
|
4.
Bahlmann E. Develbpment and application of a laboratory flux measurement system(LFMS)for the investigation of the kinetics of mercury emissions from soils..
Journal of Environmental Management,2006,81:114-125
|
CSCD被引
2
次
|
|
|
|
5.
Bauer D. Rapid,ultrasensitive detection of gas phase elemental mercury under atmospheric conditions using sequential two-photon laser induced fluorescence..
Journal of Environmental Monitoring,2002,4:339-343
|
CSCD被引
1
次
|
|
|
|
6.
Boudala FS. Mercury flux measurements over air and water in Kejimkujik National Park,Nova,Scotia..
Water,Air,and Soil Pollution,2000,122:183-202
|
CSCD被引
5
次
|
|
|
|
7.
Branfireun BA. Speciation and transport of newly deposited mercury in a boreal forest wetland:A stable mercury.isotope approach..
Water Resources Research,2005,41
|
CSCD被引
1
次
|
|
|
|
8.
Bushey JT. Mercury dynamics of a northern hardwood canopy..
Atmospheric Environment,2008,42:6905-6914
|
CSCD被引
9
次
|
|
|
|
9.
Carpi A. Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge..
Environmental Science and Technology,1997,31:2085-2091
|
CSCD被引
21
次
|
|
|
|
10.
Carpi A. Application of a Teflon(TM)dynamic flux chamber for quantifying soil mercury flux:Tests and results over background soil..
Atmospheric Environment,1998,32:873-882
|
CSCD被引
22
次
|
|
|
|
11.
Carpi A. Gaseous elemental mercury fluxes in New York City..
Water,Air,and Soil Pollution,2002,140:371-379
|
CSCD被引
2
次
|
|
|
|
12.
Chadwick SP. Influences of iron,manganese,and dissolved organic carbon on the hypolimnetic cycling of amended mercury..
Science of the Total Environment,2006,368:177-188
|
CSCD被引
5
次
|
|
|
|
13.
Choi HD. Gaseous mercury fluxes from the forest floor of the Adirondacks..
Environmental Pollution,2009,157:592-600
|
CSCD被引
9
次
|
|
|
|
14.
Clarisse O. Methylmercury speciation in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique..
Environmental Pollution,2009,157:987-993
|
CSCD被引
4
次
|
|
|
|
15.
Coolbaugh MF. Annual emissions of mercury to the atmosphere from natural sources in Nevada and California..
Environmental Geology,2002,42:338-349
|
CSCD被引
11
次
|
|
|
|
16.
Eckley CS. The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes..
Atmospheric Environment,2010,44:194-203
|
CSCD被引
8
次
|
|
|
|
17.
Eckley CS. Gaseous mercury emissions from urban surfaces:Controls and spatiotemporal trends..
Applied Geochemistry,2008,23:369-383
|
CSCD被引
2
次
|
|
|
|
18.
Engle MA. Quantifying natural source mercury emissions from the Ivanhoe Mining District,north-central Nevada,USA..
Atmospheric Environment,2001,35:3987-3997
|
CSCD被引
17
次
|
|
|
|
19.
Ericksen JA. Foliar exchange of mercury as a function of soil and air mercury concentrations..
Science of the Total Environment,2004,324:271-279
|
CSCD被引
14
次
|
|
|
|
20.
Ericksen JA. Assessing the potential for re-emission of mercury deposited in precipitation from arid soils using stable isotopes..
Environmental Science and Technology,2005,39:8001-8007
|
CSCD被引
9
次
|
|
|
|
|