帮助 关于我们

返回检索结果

Parareal算法的均方稳定性分析
ANALYSIS OF MEAN-SQUARE STABILITY OF THE PARAREAL ALGORITHM

查看参考文献17篇

吴树林 1   王志勇 2   黄乘明 3  
文摘 Parareal算法是一种非常有效的实时并行计算方法.与传统的并行计算方法相比, 该算法的显著特点是它的时间并行性一先将整个计算时间划分成若干个子区间, 然后在每个子区间内同时进行计算.Parareal算法收敛速度快, 并行效率高, 且易于编程实现, 从2001年由Lions, Maday和Tuinici等人首次提出至今, 在短短的几年间得到了广泛的研究和应用.最近, Parareal算法在随机微分方程数值解中的应用也得到了一些学者的关注.本文中, 我们研究Parareal算法在随机微分方程数值解中的均方稳定性, 分析保持算法稳定的充分性条件.通过分析, 我们得到了如下结论: a)Parareal算法在有限时间区间内是超线性收敛的; b)在无限时间区间内, 该算法是线性收敛的.最后, 通过数值试验, 我们验证了本文中的理论结果
其他语种文摘 Parareal algorithm is a very efficient parallel in time computation methods. Compared with traditional parallel methods, this algorithm has the advantages of faster convergence, higher parallel performance and easy coding. This algorithm was first proposed by Lions, Maday and Turinici in 2001 and has attracted many researchers over the past few years. Recently, the application and theoretical analysis of this algorithm for stochastic computation have been investigated by some researchers. In this paper, we analyze the Mean-square stability of the Parareal algorithm in stochastic computation. The sufficient conditions under which the Parareal algorithm is stable are obtained and it is shown that: a) the algorithm converges superlinearly on any bounded time interval and b) the convergence speed is only linear on unbounded time intervals. Finally, numerical results are given to validate our theoretical conclusions
来源 计算数学 ,2011,33(2):113-124 【核心库】
关键词 Parareal算法 ; 并行计算 ; 稳定性 ; 超线性收敛 ; 线性收敛 MR(2000)主题分类: 65L20 ; 65-04
地址

1. 四川理工学院理学院, 四川, 自贡, 643000  

2. 电子科技大学应用数学学院, 成都, 610054  

3. 华中科技大学数学与统计学院, 武汉, 430074

语种 中文
文献类型 研究性论文
ISSN 0254-7791
学科 数学
基金 四川理工学院人才引进项目资助项目 ;  国家自然科学基金资助项目
文献收藏号 CSCD:4181590

参考文献 共 17 共1页

1.  Bal G. On the convergence and the stability of the parareal algorithm to solve partial differential equations. Proceedings of the 15th International Domain Decomposition Conference, Lect. Notes Comput. Sci. Eng,2003,40:426-432 CSCD被引 1    
2.  Bal G. "parareal" time discretization for non-linear pde's with application to the pricing of an American put. In Recent Developments in Domain Decomposition Methods. Lect. Notes Comput. Sci. Eng,2002,23:189-202 CSCD被引 2    
3.  Bal G. Parallelization in time of (stochastic) ordinary differential equations. Submitted CSCD被引 1    
4.  Cortial J. A time-parallel implicit method for accelerating the solution of non-linear structural dynamics problems. Internat. J. Numer. Methods Engrg,2008,77:451-470 CSCD被引 1    
5.  Engblom S. Parallel in time simulation of multiscale stochastic chemical kinetics. Multiscale Model. Simul.,2008 CSCD被引 1    
6.  Engblom S. Time-parallel Simulation of Stochastic Chemical Kinetics. Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics. AIP Conference Proceedings,2008,1048:174-177 CSCD被引 1    
7.  Farhat C. Time-decomposed parallel time-integrators: Theory and feasibility studies for fluid, structure, and fluid-structure applications. Internat. J. Numer. Methods Engrg,2003,58:1397-1434 CSCD被引 1    
8.  Farhat C. and Bavestrello H. Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses. Internat. J. Numer. Methods Engrg,2006,67:697-724 CSCD被引 1    
9.  Gander M J. Analysis of a Krylov Subspace Enhanced Parareal Algorithm. ESAIM Proc,2008 CSCD被引 1    
10.  Gander M J. Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput,2007,29:556-578 CSCD被引 4    
11.  Higham D J. Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal,2001,38:753-769 CSCD被引 29    
12.  Koskodan R. Extrapolation of the Stochastic Theta Numerical Method for Stochastic Differential Equations. Stochastic Analysis and Applications,2006,24:475-487 CSCD被引 1    
13.  Lions J L. A "parareal" in time discretization of PDE's. C. R. Acad. Sci. Paris Ser. I Math,2001,332:661-668 CSCD被引 7    
14.  Subber W. Performance of A Parallel Time Integrator For Noisy Nonlinear System. Journal of Probabilistic Engineering Mechanics,2008 CSCD被引 1    
15.  Staff G A. Stability of the parareal algorithm. Proceedings of the 15th International Domain Decomposition Conference, Lect. Notes Comput. Sci. Eng,2003,40:449-456 CSCD被引 1    
16.  Wu S L. Parareal-Richardson Algorithm for Solving Nonlinear ODEs and PDEs. Communication in Computational Physics,2009,6:883-902 CSCD被引 1    
17.  Wu S L. Convergence and Stability analysis of the Parareal-Richardson Algorithm. Manuscript CSCD被引 1    
引证文献 2

1 孙佳安 含次同步分量下变压器时间周期有限元的Parareal求解模型 中国电机工程学报,2020,40(13):4348-4357
CSCD被引 5

2 孙佳安 考虑次同步分量的变压器时间并行有限元及铁心动态损耗分析 中国电机工程学报,2023,43(6):2426-2437
CSCD被引 2

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号