赣南西华山钨矿床的流体混合作用:基于H,O同位素模拟分析
Fluid mixing in Xihuashan tungsten deposit, Southern Jixangxi Province:Hydrogen and oxygen isotope simulation analysis
查看参考文献60篇
文摘
|
赣南西华山钨矿床是我国典型的大型石英脉型黑钨矿矿床.H,O同位素的研究表明,该矿床δD值-43‰~-66‰,石英δ18O值2.3‰~13.2‰,对应的成矿流体δ18O值-8.7‰~7.6‰,表明成矿流体为岩浆水与大气降水的混合流体.不同机制下矿物O同位素模拟计算表明,冷却,沸腾和混合作用所形成矿物的O同位素组成明显不同,不同矿化阶段矿物O同位素值的投影点与冷却和沸腾演化曲线相差甚远,而与混合演化曲线比较吻合.冷却或沸腾不是西华山钨矿床成矿流体演化的主要过程,岩浆水与大气降水的混合可能才是导致钨矿化的主因 |
其他语种文摘
|
Xihuashan tungsten deposit in Southern Jiangxi Province is a large typical quartz-vine type wolframite deposit. Based on hydrogen and oxygen isotope data measured in this paper and others, the δD values of fluid inclusions are -43‰ to -66‰, and the δ18O values of quartz in the deposits vary between 2.3‰ and 13.2‰, while δ18O values of the mineralizing fluids between -8.7‰ and 7.6‰.It is suggested that the ore fluids were a mixture between magmatic water and meteoric water. The oxygen isotope composition of minerals precipitating by each mechanism was modeled. It is evident that cooling, boiling and fluid mixing have a contrasting influence on the oxygen isotope composition of the precipitating minerals. The mixing of a magmatic fluid with meteoric water reproduces the observed δ18O composition of the ore and gangue minerals remarkably well. Cooling or boiling is not a major process in the evolution of ore-forming fluids, while the magmatic water mixed with meteoric water may result in wolframite deposition |
来源
|
地球化学
,2011,40(1):45-55 【核心库】
|
关键词
|
石英脉型钨矿床
;
O同位素
;
混合作用
;
模拟分析
;
西华山
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
国家973计划
|
文献收藏号
|
CSCD:4153057
|
参考文献 共
60
共3页
|
1.
Beuchat S. Fluid evolution in the W-Cu-Zn-Pb San Cristobal vein, Peru:Fluid inclusion and stable isotope evidence.
Chem Geol,2004,210(1/4):201-224
|
CSCD被引
21
次
|
|
|
|
2.
Morishita Y. Fluid evolution and geobarometry on the Ohtani and Kaneuchi tungsten-quartz vein deposits, Japan:Oxygen and carbon isotopic evidence.
Miner Deposita,1991,26(1):40-50
|
CSCD被引
2
次
|
|
|
|
3.
So C S. Origin and evolution of W-Mo-producing fluids in a granitic hydrothermal system:Geochemical studies of quartz vein deposits around the Susan Granite, Hwanggangri District, Republic of Korea.
Econ Geol,1994,89(2):246-267
|
CSCD被引
14
次
|
|
|
|
4.
Rice C M. Assessment of grid-based whole-rockδD surveys in exploration:Boulder County epithermal tungsten deposit, Colorado.
Econ Geol,2001,96(1):133-143
|
CSCD被引
3
次
|
|
|
|
5.
Rios F J. Fluid evolution in the Pedra Preta wolframite ore deposit, Paleoproterozoic Musa granite, eastern Amazon craton, Brazil.
J South Am Earth Sci,2003,15(7):787-802
|
CSCD被引
15
次
|
|
|
|
6.
王旭东. 江西漂塘钨矿成矿流体来源的He和Ar同位素证据.
科学通报,2009,54(21):3338-3344
|
CSCD被引
17
次
|
|
|
|
7.
O'Reilly C. Fluid inclusion study of the Ballinglen W-Sn-sulphide mineralization,SE Ireland.
Miner Deposita,1997,32(6):569-580
|
CSCD被引
12
次
|
|
|
|
8.
Ramboz C. The evolution of H2O-CO2-CH4-bearing fluid in a wolframite vein: Reconstruction from fluid inclusion studies.
Geochim Cosmochim Acta,1985,49(1):205-219
|
CSCD被引
21
次
|
|
|
|
9.
Samson I M. Fluid evolution and mineralization in a subvolcanic granite stock:The Mount Pleasant W-Mo-Sn deposits, New Brunswick, Canada.
Econ Geol,1990,85(1):145-163
|
CSCD被引
13
次
|
|
|
|
10.
Seal R R. Stockwork tungsten (scheelite)-molybdenum mineralization, Lake George, southwestern New Brunswick.
Econ Geol,1987,82(5):1259-1282
|
CSCD被引
17
次
|
|
|
|
11.
曹晓峰. 共生黑钨矿与石英中流体包裹体红外显微对比研究——以瑶岗仙石英脉型钨矿床为例.
矿床地质,2009,28(5):611-620
|
CSCD被引
25
次
|
|
|
|
12.
Clark A H. The San Judas Tadeo W (-Mo, Au)deposit:Permian lithophile mineralization in southeastern Peru.
Econ Geol,1990,85(7):1651-1668
|
CSCD被引
6
次
|
|
|
|
13.
龚庆杰. 柿竹园钨多金属矿床形成机制的物理化学分析.
地学前缘,2004,11(4):617-625
|
CSCD被引
22
次
|
|
|
|
14.
Jackson N J. Evolution of the Cornubian ore field, Southwest England:Part II. Mineral deposits and ore-forming processes.
Econ Geol,1989,84(5):1101-1133
|
CSCD被引
7
次
|
|
|
|
15.
Landis G P. Geologic, fluid inclusion, and stable isotope studies of the Pasto Buena tungsten-base metal ore deposit, Northern Peru.
Econ Geol,1974,69(7):1025-1059
|
CSCD被引
19
次
|
|
|
|
16.
席斌斌. 江西省全南县大吉山钨矿成矿流体演化特征.
地质学报,2008,82(7):956-966
|
CSCD被引
25
次
|
|
|
|
17.
Giamello M. The W-Mo deposit of Perda Majori(SE Sardinia, Italy):A fluid inclusion study of ore and gangue minerals.
Eur J Mineral,1992,4(5):1079-1084
|
CSCD被引
15
次
|
|
|
|
18.
Graupner T. Fluid regime and ore formation in the tungsten(-yttrium)deposits of Kyzyltau(Mongolian Altai): Evidence for fluid variability in tungsten-tin ore systems.
Chem Geol,1999,154(1/4):21-58
|
CSCD被引
16
次
|
|
|
|
19.
Lynch J V G. Hydrothermal alteration, veining, and fluid-inclusion characteristics of the Kalzas wolframite deposit, Yukon.
Can J Earth Sci,1989,26(10):2106-2115
|
CSCD被引
9
次
|
|
|
|
20.
Polya D A. Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal:Implications for models of ore genesis.
Econ Geol,1989,84(5):1134-1152
|
CSCD被引
17
次
|
|
|
|
|