ON HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHODS FOR CONTINUOUS SYLVESTER EQUATIONS
查看参考文献41篇
文摘
|
We present a Hermitian and skew-Hermitian splitting (HSS) iteration method for solving large sparse continuous Sylvester equations with non-Hermitian and positive definite/semidefinite matrices. The unconditional convergence of the HSS iteration method is proved and an upper bound on the convergence rate is derived. Moreover, to reduce the computing cost, we establish an inexact variant of the HSS iteration method and analyze its convergence property in detail. Numerical results show that the HSS iteration method and its inexact variant are efficient and robust solvers for this class of continuous Sylvester equations |
来源
|
Journal of Computational Mathematics
,2011,29(2):185-198 【核心库】
|
DOI
|
10.4208/jcm.1009-m3152
|
关键词
|
Continuous Sylvester equation
;
HSS iteration method
;
Inexact iteration
;
Convergence
|
地址
|
LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
0254-9409 |
学科
|
数学 |
基金
|
国家973计划
;
国家自然科学基金国家杰出青年科学基金
|
文献收藏号
|
CSCD:4152904
|
参考文献 共
41
共3页
|
1.
Anderson B.D.O. Stability and the matrix Lyapunov equation for discrete 2-dimensional systems, IEEE Trans.
Circuits Systems,1986,33:261-267
|
CSCD被引
1
次
|
|
|
|
2.
Axelsson O. A class of nested iteration schemes for linear systems with a coefficient matrix with a dominant positive definite symmetric part.
Numer. Algorithms,2004,35:351-372
|
CSCD被引
10
次
|
|
|
|
3.
Bai Z-Z. A class of two-stage iterative methods for systems of weakly nonlinear equations.
Numer. Algorithms,1997,14:295-319
|
CSCD被引
1
次
|
|
|
|
4.
Bai Z-Z. Splitting iteration methods for non-Hermitian positive definite systems of linear equations.
Hokkaido Math. J,2007,36:801-814
|
CSCD被引
1
次
|
|
|
|
5.
Bai Z-Z. Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices.
Math. Comput,2007,76:287-298
|
CSCD被引
1
次
|
|
|
|
6.
Bai Z-Z. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems.
SIAM J. Matrix Anal. Appl,2003,24:603-626
|
CSCD被引
1
次
|
|
|
|
7.
Bai Z-Z. Alternately linearized implicit iteration methods for the minimal nonnegative solutions of nonsymmetric algebraic Riccati equations.
Numer. Linear Algebra Appl,2006,13:655-674
|
CSCD被引
1
次
|
|
|
|
8.
Bai Z-Z. On preconditioned iterative methods for Burgers equations.
SIAM J. Sci. Comput,2007,29:415-439
|
CSCD被引
1
次
|
|
|
|
9.
Bai Z-Z. Preconditioners for nonsymmetric block Toeplitz-like-plus-diagonal linear systems.
Numerische Mathematik,2003,96:197-220
|
CSCD被引
1
次
|
|
|
|
10.
Bartels RH. Solution of the matrix equation AX + XB = C: Algorithm 432.
Commun. ACM,1972,15:820-826
|
CSCD被引
40
次
|
|
|
|
11.
Calvetti D. Application of ADI iterative methods to the restoration of noisy images.
SIAM J. Matrix Anal. Appl,1996,17:165-186
|
CSCD被引
12
次
|
|
|
|
12.
Evans DJ. A parallel additive preconditioner for conjugate gradient method for AX + XB = C.
Parallel Comput,1994,20:1055-1064
|
CSCD被引
3
次
|
|
|
|
13.
Friswell MI.
Finite Element Model Updating in Structural Dynamics,1995
|
CSCD被引
83
次
|
|
|
|
14.
Gantmacher FR.
The Theory of Matrices,1959
|
CSCD被引
15
次
|
|
|
|
15.
Golub GH. A Hessenberg-Schur method for the problem AX + XB = C.
IEEE Trans. Automat. Control,1979,24:909-913
|
CSCD被引
25
次
|
|
|
|
16.
Golub GH.
Matrix Computations, 3rd Edition,1996
|
CSCD被引
1
次
|
|
|
|
17.
Gu C-Q. A shift-splitting hierarchical identification method for solving Lyapunov matrix equations.
Linear Algebra Appl,2009,430:1517-1530
|
CSCD被引
1
次
|
|
|
|
18.
Guo C-H. Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices.
SIAM J. Matrix Anal. Appl,2001,23:225-242
|
CSCD被引
1
次
|
|
|
|
19.
Guo C-H. On the iterative solution of a class of nonsymmetric algebraic Riccati equations.
SIAM J. Matriz Anal. Appl,2000,22:376-391
|
CSCD被引
1
次
|
|
|
|
20.
Guo X-X. On the minimal nonnegative solution of nonsymmetric algebraic Riccati equation.
J. Comput. Math,2005,23:305-320
|
CSCD被引
1
次
|
|
|
|
|