洛仑兹力控制高超声速进气道边界层分离的数值模拟
Numerical investigation of Lorentz force control on hypersonic inlet boundary layer separation
查看参考文献16篇
文摘
|
采用空间HLLE格式,时间LU-SGS推进,sst-kω湍流模型,多块结构网格程序,对磁流体动力学(Magnetohydrodynamic:MHD)控制高超声速二维进气道边界层分离进行了数值研究.研究发现,不施加控制时,数值模拟得到的壁面静压和实验结果符合良好,进气道喉道处分离区占据喉道高度的1/3左右.通过施加MHD控制,消除了进气道内部的边界层分离,总压恢复系数从0.502提高到0.56,喉道处流场畸变系数减小了18.6% |
其他语种文摘
|
The mechanisms of boundary layer separation caused by Shock/Boundary layer Interaction(SWBLI) in scramjet inlet and its control with Magnetohydrodynamics(MHD) were investigated numerically with a three dimensional CFD code, within which HLLE schemes,LU-SGS method, sst-kω turbulence model and multiblock structure grid were used. The results show that the numerical wall pressure agrees well with the experimental data, and the height of separation zone in the shoulder of scramjet inlet occupies 1/3 size of the throat height. With MHD accelerating the boundary layer, the separation in the scramjet inlet is eliminated, and the total pressure recovery coefficient is increased from 0.502 to 0.56, the flow field distortion parameter at the scramjet inlet throat zone is decreased by 18.6% |
来源
|
推进技术
,2011,32(1):36-41 【核心库】
|
关键词
|
高超声速进气道
;
MHD流动控制
;
激波-边界层相互作用
;
边界层分离
;
数值仿真
|
地址
|
1.
南京航空航天大学能源与动力学院, 江苏, 南京, 210016
2.
中国科学院力学研究所, 中国科学院高温气体动力学重点实验室, 北京, 100190
|
语种
|
中文 |
ISSN
|
1001-4055 |
学科
|
航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:4128948
|
参考文献 共
16
共1页
|
1.
Van Wie D M. Scramjet inlets.
scramjet propulsion,2000:189
|
CSCD被引
1
次
|
|
|
|
2.
Waltrup P J. Structure of shock wave in cylindrical ducts.
AIAA Journal,1973,11(10):1404-1408
|
CSCD被引
3
次
|
|
|
|
3.
Masatoshi Kodera.
Mach 6 test of a scram-jet engine with boundary layer bleeding and two-staged fuel injection. AIAA 2003-7049
|
CSCD被引
1
次
|
|
|
|
4.
Van Wie D M. Future-technologies-application of plasma devices for vehicle systems.
Critical Technologies for Hypersonic Vehicle Development. Rhode-St-Genese, Belgium,RTO-EN-AVT-116,2004
|
CSCD被引
1
次
|
|
|
|
5.
Updike G A.
Hypersonic separated flow control using Magneto-aerodynamic interaction . AIAA 2005-164
|
CSCD被引
1
次
|
|
|
|
6.
Kalra C S.
Numerical study of shockwave induced boundary layer separation control using plasma actuators. AIAA 2008-1095
|
CSCD被引
1
次
|
|
|
|
7.
苏纬仪. MHD控制激波诱导边界层分离的机理.
推进技术,2009,30(2)
|
CSCD被引
1
次
|
|
|
|
8.
Kalra C S. Numerical study of shockwave induced boundary layer separation control using magnetohydrodynamic actuators.
Phys. Fluids,2009,21(10):106101-106109
|
CSCD被引
1
次
|
|
|
|
9.
Shinya Saito.
Boundary layer separation control by MHD interaction . AIAA 2008-1091
|
CSCD被引
1
次
|
|
|
|
10.
Zaidi S H.
Snowplow surface discharge in magnetic field for high speed boundary layer control. AIAA 2006-1006
|
CSCD被引
2
次
|
|
|
|
11.
Kalra C.
Non-thermal control of shock-wave induced boundary layer separation using magneto-hydrodynamics. AIAA 2007-4138
|
CSCD被引
2
次
|
|
|
|
12.
Kalra C.
Magnetically driven surface discharges for shock-wave induced boundary-layer separation control. AIAA 2007-222
|
CSCD被引
2
次
|
|
|
|
13.
Macheret S O.
Physics of magnetically accelerated non-equilibrium surface discharges in high-speed flow. AIAA 2006-1005
|
CSCD被引
1
次
|
|
|
|
14.
顾洪斌.
超燃冲压发动机设计与性能研究,2008
|
CSCD被引
2
次
|
|
|
|
15.
陈大伟. 超声速大攻角旋成体迎风激波数值模拟.
力学学报,2006,38(6):721-733
|
CSCD被引
5
次
|
|
|
|
16.
Jean-Francous D.
Numerical simulation of turbulent magnetohydrodynamic flows,2001:221-223
|
CSCD被引
1
次
|
|
|
|
|