原子力显微镜形貌测量偏差的机理分析及修正方法
ANALYSIS OF TOPOGRAPHY MEASUREMENT ERROR IN ATOMIC FORCE MICROSCOPE(AFM) AND ITS REVISION METHOD
查看参考文献14篇
文摘
|
采用原子力显微镜测量样品表面形貌时,针尖与样品间的相互作用力会使样品表面不同力学性质的区域变形量不同,从而使得形貌测量结果产生偏差.首先研究了引起形貌测量偏差的机理,进一步通过数值计算发现通过引入高频信号与低频信号叠加作为新的形貌测量信号可以近似避免这一类形貌测量偏差.但是对于普通的矩形截面悬臂梁提取高阶信号是比较困难的,通过外加弹簧的结构设计来调节悬臂梁各阶本征频率相对值,使得在实验测量过程中可以较方便地提取悬臂梁振动的高频信号 |
其他语种文摘
|
In measuring topography of sample,the interaction between tip and sample will cause the deformation on the sample surface and the deformations will be different in the regions with different mechanical property.Furthermore,the deformations will cause non-negligible error in topography measurement.Theory analyses are carried out on this measurement error and further numerical research shows that mixed signals with high-frequency components are able to eliminate the measurement error.However,it is difficult to measure high-frequency signal for normal cantilever.In order to gain a proper high-frequency signal,a modified cantilever is introduced.The new designed cantilever can help us to adjust the relative values of eigen-frequencies of a cantilever and then enhance the high-frequency signal |
来源
|
力学学报
,2011,43(1):112-121 【核心库】
|
关键词
|
AFM
;
形貌测量偏差
;
高频信号
;
结构设计
;
各阶本征频率相对值
|
地址
|
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
机械、仪表工业 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:4126884
|
参考文献 共
14
共1页
|
1.
Binnig G. Atomic force microscope.
Physical Review Letters,1986,56(9):930-933
|
CSCD被引
476
次
|
|
|
|
2.
Erlandsson R. equivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7x7.
Physical Review B,1996,54(12):R8309-R8312
|
CSCD被引
2
次
|
|
|
|
3.
Hitomi J. Atomic force microscopy in histology and cytology.
Archives of histology and cytology,1996,59(5):421-431
|
CSCD被引
1
次
|
|
|
|
4.
李喜德. 探针实验力学.
实验力学,2007,22(3):217-228
|
CSCD被引
9
次
|
|
|
|
5.
李凯. 微梁传感研究大分子构象转变.
实验力学,2007,22(3):395-400
|
CSCD被引
2
次
|
|
|
|
6.
Sahin O. Resonant harmonic response in tapping-mode atomic force microscopy.
Physical Review B,2004,69(16):165416-1-165416-9
|
CSCD被引
5
次
|
|
|
|
7.
Melikyan H. Hard disk magnetic domain nano-spatial resolution imaging by using a near-field scanning microwave microscope with an AFM probe tip.
Journal of Magnetism and Magnetic Materials,2009,321:2483-2487
|
CSCD被引
1
次
|
|
|
|
8.
Ohnesorge F. True atomic resolution by atomic force microscopy through repulsive and attractive forces.
Science,1993,260(5113):1451-1456
|
CSCD被引
6
次
|
|
|
|
9.
Liang J. Nanografting of alkanethiols by tapping mode atomic force microscopy.
Langmuir,2007,23(11):6142-6147
|
CSCD被引
1
次
|
|
|
|
10.
Solares SD. Frequency and force modulation atomic force microscopy: low-impact tapping-mode imaging without bistability.
Measurement Science and Technology,2007,18(7):L9-L14
|
CSCD被引
1
次
|
|
|
|
11.
Wang Y. Understanding tappingmode atomic force microscopy data on the surface of soft block copolymers.
Surface Science,2003,530(3):136-148
|
CSCD被引
7
次
|
|
|
|
12.
Yang CW. Imaging of soft matter with tapping-mode atomic force microscopy and noncantact-mode atomic force microscopy.
Nanotechnology,2007,18(8):084009-1-084009-8
|
CSCD被引
3
次
|
|
|
|
13.
Hertz J. On the contact of elastic solids.
Journal fur die reine und angewandte Mathematik,1882,92:156-171
|
CSCD被引
1
次
|
|
|
|
14.
Geradin M.
Mechanical Vibrations Theory and Application to Structural Dynamics,1994
|
CSCD被引
1
次
|
|
|
|
|