帮助 关于我们

返回检索结果

利用脑成像多体素模式分析解码认知的神经表征:原理和应用
Decoding the Representation of Cognition:the Principles and Applications of MVPA

查看参考文献33篇

雷威 1   杨志 2   詹旻野 2   李红 3 *   翁旭初 2  
文摘 多体素模式分析(multi-voxel pattern analysis,MVPA)是一种基于机器学习理论发展出来的新的功能磁共振数据分析技术.MVPA技术通过训练分类器,对由不同认知状态引起的多体素信号模式进行分类.与传统的基于单个体素的分析方法相比,该技术可更敏感地检测脑对认知状态的表征,并使得从神经信号解码认知状态成为可能.文章介绍MVPA技术的基本原理,分析步骤以及可以用MVPA来解决的科学问题,并对应用中可能面临的问题提供了参考建议
其他语种文摘 Multi-voxel pattern analysis(MVPA),which is based on machine learning theories,has gained great popularity over the past years as a new approach for fMRI data analysis.By training a classifier,MVPA categorizes multi-voxel patterns tuned by different cognitive states.Compared to conventional voxel-wise methods,this new approach provide higher sensitivity for detecting cognitive representations in the brain.It opens up the possibility for "reading out" mental states of human beings from the non-invasive recordings of brain activities.This paper introduce the fundamental principles of MVPA and the basic realization procedures.Scientific questions that may be properly addressed with this new approach and potential problems in its applications are also discussed
来源 心理科学进展 ,2010,18(12):1934-1941 【扩展库】
关键词 多体素模式分析 ; 表征 ; 功能磁共振成像 ; 分类
地址

1. 西南大学心理学院, 中国科学院心理学研究所脑高级功能实验室, 重庆, 400715  

2. 中国科学院心理学研究所, 中国科学院脑高级功能实验室, 北京, 100101  

3. 西南大学心理学院, 重庆, 400715

语种 中文
文献类型 研究性论文
ISSN 1671-3710
学科 社会科学总论
文献收藏号 CSCD:4107869

参考文献 共 33 共2页

1.  Aguirre G K. Continuous carry-over designs for fMRI. Neuroimage,2007,35(4):1480-1494 CSCD被引 1    
2.  Cox D D. Functional magnetic resonance imaging(fMRI)'brain reading':detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage,2003,19(2):261-270 CSCD被引 15    
3.  Davatzikos C. Classifying spatial patterns of brain activity with machine learning methods:application to lie detection. Neuroimage,2005,28(11):663-668 CSCD被引 7    
4.  De Martino F. Combining multivariate voxels election and support vector machines for mapping and classification of fmri spatial patterns. Neuroimage,2008,43(1):44-58 CSCD被引 10    
5.  Grill-Spector K. fMRI-adaptation:a tool for studying the functional properties of human cortical neurons. Acta Psychologica,2001,107(1/3):293-321 CSCD被引 7    
6.  Hanson S J. Combinatorial codes in ventral temporal lobe for object recognition:Haxby(2001).revisited is there a'face'area. Neuroimage,2004,23(1):156-166 CSCD被引 5    
7.  Harrison S A. Decoding reveals the contents of visual working Memory in early visual areas. Nature,2009,458(7238):632-635 CSCD被引 15    
8.  Hasson U. Intersubject synchronization of cortical activity during natural vision. Science,2004,303(5664):1634-1640 CSCD被引 16    
9.  Haynes J D. Predicting the orientation of invisible stimuli from activity in primary visual cortex. Nature Neuroscience,2005,8(5):686-691 CSCD被引 5    
10.  Haynes J D. Predicting the stream of consciousness from activity in human visual cortex. CurrentBiology,2005,15(14):1301-1307 CSCD被引 2    
11.  Haynes J D. Decoding mental states from brain activity in humans. Nature Reviews Neuroscience,2006,7(7):523-534 CSCD被引 14    
12.  Hutchinson R. Hidden process models. Proceedings of the 23rd international conference on Machine learning,2006:433-440 CSCD被引 1    
13.  Kamitani Y. Decoding the visual and subjective contents of the human brain. Nature Neuroscience,2005,8:679-685 CSCD被引 19    
14.  Kamitani Y. Decoding Seen and attended motion directions from activity in the human visual cortex. Current Biology,2006,16(11):1096-1102 CSCD被引 4    
15.  Kanwisher N. Domain specificity in face perception. Nature Neuroscience,2000,3(8):759-763 CSCD被引 9    
16.  Kay K N. Identifying natural images from human brain activity. Nature,2008,452:352-355 CSCD被引 18    
17.  Kriegeskorte N. Individual faces elicit distinct response patterns in human anterior temporal cortex. PNAS,2007,104(51):20600-20605 CSCD被引 1    
18.  MacEvoy S P. Decoding the representation of multiple simultaneous objects in human occipitotemporal cortex. CurrentBiology,2009,19(11):1-5 CSCD被引 1    
19.  Mitchell T M. Machine Learning,1997 CSCD被引 109    
20.  Mitchell T M. Learning to decode cognitive states from brain images. Machine Learnin,2004,5:145-175 CSCD被引 7    
引证文献 6

1 黄璜 大脑视知觉调控的神经机制 心理科学,2015,38(1):93-97
CSCD被引 0 次

2 孙泽坤 疼痛与注意的交互作用:自下而上的捕获效应和自上而下的调节作用 心理科学进展,2015,23(12):2096-2106
CSCD被引 6

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号