水,土环境中的锑(Sb)污染及其对植物和微生物的生态毒理效应研究进展
Antimony Pollution in Water and Soil and Its Ecotoxicological Effects on Plants and Microorganisms
查看参考文献36篇
文摘
|
由于过去几十年锑(Sb)矿山开发和各行各业对Sb的广泛使用,水土环境中的Sb污染日益严重.简要回顾十几年来土壤,水体中Sb的污染途径,污染程度,环境行为,在植物和微生物中的积累特征及其生态毒理效应等方面的研究进展.植物对Sb的吸收和积累量随植物种属和污染场所差别很大,Sb从植物地下组织到地上组织的转移系数也随植物种属差别很大.Sb在自然水环境中多以Sb(III)和Sb(V)两种氧化态存在并受水环境的氧化条件影响.Sb在水环境微生物中积累的报道几乎全部是关于藻类的,藻类吸收Sb的机理及其在细胞中的分布特征还不是很清楚.关于Sb对植物和微生物的生态毒理效应也还知之甚少.目前对Sb在环境的行为和在大气圈,水圈,土壤圈及各圈层界面之间的迁移转化(尤其是全球尺度的迁移),Sb对植物和微生物的生态毒理效应的分子生物学机制等诸多方面都有待深入研究 |
其他语种文摘
|
The ever-increasing antimony(Sb) pollution has drawn more and more attention from scientists and governments.Sb pollution in water and soil and its ecotoxicological effects on plants and microorganisms are reviewed in this paper.Phytoaccumulation of Sb varies greatly with plant species and contamination sites.The translocation coefficients of Sb from plant roots to above-ground biomass also varies greatly with plant species.Chemical forms of Sb exist mainly at +3 and +5 in aquatic environment and are affected by the redox conditions.Bioaccumulation of Sb in aquatic environment focuses on the algae.The mechanisms involved in adsorption and partition of Sb inside cell are unclear.So far little information was available on environmental behavior of Sb and its toxicity to higher plants and microbes.The transport and transformation of Sb in pedosphere,hydrosphere and atmosphere and among them,and the molecular mechanisms of toxicity of Sb to higher plants and microorganisms need further study |
来源
|
应用与环境生物学报
,2010,16(6):891-894 【核心库】
|
DOI
|
10.3724/sp.j.1145.2010.00891
|
关键词
|
锑污染
;
环境行为
;
生物累积
;
生态毒理效应
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
2.
中国科学院新疆生态与地理研究所, 中国科学院干旱区生物地理与生物资源重点实验室, 乌鲁木齐, 830011
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1006-687X |
学科
|
环境科学基础理论 |
基金
|
中国科学院知识创新工程重要方向项目
;
中国科学院“百人计划”项目
|
文献收藏号
|
CSCD:4101297
|
参考文献 共
36
共2页
|
1.
Smichowski P. Antimony in the environment as a global pollutant:A review on analytical methodologies for its determination in atmospheric aerosols.
Talanta,2008,75:2-14
|
CSCD被引
23
次
|
|
|
|
2.
IARC. Some organic solvents,resin monomers and related compounds, pigments and occupational exposures in paint manufacture and painting. Lyon,International Agency for Research on Cancer.
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans,1989,47:291-305
|
CSCD被引
1
次
|
|
|
|
3.
Filella M. Antimony in the environment:a review focused on natural waters I.Occurence.
Earth Sci Rev,2002,57:125-176
|
CSCD被引
111
次
|
|
|
|
4.
Filella M. Antimony in the environment:a review focused on natural waters II.
Relevant solution chemistry.Earth Sci Rev,2002,59:265-285
|
CSCD被引
51
次
|
|
|
|
5.
Tschan M. Antimony in the soil-plant system- Areview.
Environ Chem,2009,6:106-115
|
CSCD被引
19
次
|
|
|
|
6.
Krachler M. Increasing atmospheric antimony contamination in the northern hemisphere:Snow,ice and evidence from Devon Island,Arctic Canada.
J Environ Monit,2005,7:1169-1176
|
CSCD被引
19
次
|
|
|
|
7.
Shotyk W. Lithogenic,oceanic and anthropogenic sources of atmospheric Sb to a maritime blanket bog,Myrarnar,Faroe Islands.
J Environ Monit,2005,7:1148-1154
|
CSCD被引
5
次
|
|
|
|
8.
Maher WA. Antimony in the environment-The new global puzzle.
Environ Chem,2009,6:93-94
|
CSCD被引
6
次
|
|
|
|
9.
Gómez D. Antimony:A trafficrelated element in the atmosphere of Buenos Aires,Argentina.
J Environ Monit,2005,7:1162-1168
|
CSCD被引
1
次
|
|
|
|
10.
Johnson CA. Solubility of antimony and other elements in samples taken from shooting ranges.
J Environ Qual,2005,34:248-254
|
CSCD被引
18
次
|
|
|
|
11.
何孟常. 环境中锑的分布、存在形态及毒性和生物有效性.
化学进展,2004,16(1):131-135
|
CSCD被引
94
次
|
|
|
|
12.
He MC. Preliminary studies of heavy metal pollution in soil and plant near antimony mine area.
J Beijing Norm Univ Nat Sci,2002,38:417-420
|
CSCD被引
1
次
|
|
|
|
13.
Baroni F. Antimony accumulation in Achillea ageratum,Lantago lanceolata and Silene vulgaris growing in an old Sb-mining area.
Environ Poll,2000,109:347-352
|
CSCD被引
27
次
|
|
|
|
14.
Adriano DC.
Trace Elements in Terrestrial Environments.2nd ed,2001
|
CSCD被引
1
次
|
|
|
|
15.
Lintschinger J. Studies on speciation of antimony in soil contaminated by industrial activity.
Int J Environ Anal Chem,1998,72:11-25
|
CSCD被引
6
次
|
|
|
|
16.
Hammel W. Mobility of antimony in soil and its availability to plants.
Chemosphere,2000,41:1791-1798
|
CSCD被引
26
次
|
|
|
|
17.
Flynn HC. Antimony bioavailability in mine soils.
Environ Pollut,2003,124:93-100
|
CSCD被引
17
次
|
|
|
|
18.
Ashley PM. Environmental mobility of antimony around mesothermal stibnite deposits,New South Wales, Australia and southern New Zealand.
J Geochem Explor,2003,77:1-14
|
CSCD被引
20
次
|
|
|
|
19.
Hozhina EI. Uptake of heavy metals,arsenic,and antimony by aquatic plants in the vicinity of ore mining and processing industries.
J Geochem Explor,2001,74:153-162
|
CSCD被引
5
次
|
|
|
|
20.
Pratas J. Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony,tungsten and mine reclamation.
J Geochem Explor,2005,85:99-107
|
CSCD被引
6
次
|
|
|
|
|