Kriging插值和序贯高斯条件模拟算法的对比分析
Analysis and Comparison in Arithmetic for Kriging Interpolation and Sequential Gaussian Conditional Simulation
查看参考文献21篇
文摘
|
本文对Kriging插值与序贯高斯条件模拟值的算法联系进行了推导,并将两种计算结果和原始数据的统计参数作了对比.结果表明,Monto-carlo方法求得的序贯高斯条件模拟值经数学变换后等同于已知数据和此前模拟数据共同参与的Kriging插值结果与一个随机偏差的和,该随机偏差的均值为0,方差为Kriging误差方差.最优性条件导致Kriging插值结果的方差较原始数据降低了1个Kriging误差方差,造成Kriging平滑效应,其空间变异函数值降低,但自协方差函数值不变.序贯高斯条件模拟避免了平滑效应,其方差,变异函数和自协方差函数均不变,而其模拟值的误差方差较Kriging误差方差增加了1倍,表明1次随机模拟值的误差比Kriging插值大.然而,多次随机模拟值的平均值与Kriging插值的地理制图效果近似,可以弥补局部估值误差大的不足.因此,在应用中,Kriging插值是提供局部最优估计的方法,但却低估了全局的空间变异.而序贯高斯条件模拟的优点,在于提供若干等可能概率的模拟结果以进行估值的不确定性评价,并再现全局的空间可变性 |
其他语种文摘
|
In this paper,the relation in arithmetic between Kriging interpolation and sequential Gaussian conditional simulation(SGCS)were inferred and the statistical parameters for Kriging interpolation,for SGCS and for the original data were compared.It demonstrated that a stochastic realization of SGCS calculated by Monte Carlo Method could be divided into two parts by mathematic transform,one was Kriging value,and the other was a stochastic deviation which followed a normal distribution with the mean = 0 and the variance equal to Kriging error variance.The comparison among Kriging interpolation,SGCS and the origin data showed that the variance of Kriging interpolation value was lower than that of the original data with a reduction equal to one Kriging error variance.This was a result of demanding for optimal weights in estimating,which was attributed to the smoothing effect during Kriging interpolation.And because of the smoothing effect,the variogram for Kriging interpolation was lower than that of the original data,though it kept no change in autocovariance.By adding the missing variance back into the SGCS,the smoothing effect was corrected,and it kept no change in variance,variogram and covariance.But the error variance caused by SGCS was as 2 times as Kriging error variance which showed that the precision of local estimate of a single SGCS was lower than that of Kriging.However,SGCS could correct the shortage by adequate repeats because the mean SGCS and Kriging interpolation share a same expectation in theory.And then,in the function of geography mapping mean SGCS was comparable with Kriging.In practice it could be concluded that the advantage of Kriging method was to provide accurate estimate in a local zone though it underestimated spatial variation in the whole area.While the advantage of SGCS was to carry out uncertainty assessment for spatial estimate by providing multiple results about probability and reproduce the spatial variability in the whole area |
来源
|
地球信息科学学报
,2010,12(6):767-776 【扩展库】
|
关键词
|
Kriging插值
;
序贯高斯条件模拟(SGCS)
;
算法联系
|
地址
|
1.
郑州大学水利与环境学院, 郑州, 450001
2.
河南省国土资源调查规划院, 郑州, 450016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
自然地理学 |
基金
|
国家自然科学青年基金项目
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:4094465
|
参考文献 共
21
共2页
|
1.
Webster R. Automatic Soil Boundary Location from Transect Data.
Mathematical Geology,1973,5:27-37
|
CSCD被引
8
次
|
|
|
|
2.
侯景儒. 中国地质统计学(空间信息统计学)发展的回顾与前景.
地质与勘探,1997,33(1):53-58
|
CSCD被引
22
次
|
|
|
|
3.
陶澍. 深圳地区土壤汞含量分布及污染.
中国环境科学,1993,13(1):35-38
|
CSCD被引
11
次
|
|
|
|
4.
史海滨. 土壤水分空间变异的套合结构模型及区域信息估值.
水利学报,1994,25(7):70-77
|
CSCD被引
35
次
|
|
|
|
5.
周慧珍. 土壤空间变异性研究.
土壤学报,1996,33(3):232-241
|
CSCD被引
136
次
|
|
|
|
6.
宋丽琼. 日降水量的空间插值方法与应用对比分析-以深圳市为例.
地球信息科学,2008,10(5):567-571
|
CSCD被引
1
次
|
|
|
|
7.
Goovaerts P. Geostatistical Modelling of Uncertainty in Soil Science.
Geoderma,2001,103:3-26
|
CSCD被引
50
次
|
|
|
|
8.
Mowrer H T. Propagating Uncertainty through Spatial Estimation Processes for Old - growth Subalpine Using Sequential Gaussian Simulation in GIS.
Ecological Modeling,1997,98:73-86
|
CSCD被引
2
次
|
|
|
|
9.
Castrignanb A. Geostatistical stochastic Simulation of Soil Water Content in a Forested Area of South Italy.
Biosystems Engineering,2004,87(2):257-266
|
CSCD被引
1
次
|
|
|
|
10.
Deutsch C V. A Sequential Indicator Simulation Program for Categorical Variables with Point and Block Data: BlockSIS.
Computers and Geosciences,2006,32:1669-1681
|
CSCD被引
11
次
|
|
|
|
11.
Delbari M. Using Sequential Gaussian Simulation to Assess the Field - scale Spatial Uncertainty of Soil Water Content.
Catena,2009,79:163-169
|
CSCD被引
9
次
|
|
|
|
12.
赵永存. 张家港土壤表层铜含量空间预测的不确定性评价研究.
土壤学报,2007,44(6):974-981
|
CSCD被引
13
次
|
|
|
|
13.
史舟. 水稻土重金属空间分布的随机模拟和不确定评价.
环境科学,2007,28(1):209-214
|
CSCD被引
23
次
|
|
|
|
14.
柴旭荣. 利用高程辅助进行土壤有机质的随机模拟.
农业工程学报,2008,24(12):210-214
|
CSCD被引
13
次
|
|
|
|
15.
张景雄.
空间信息的尺度,不确定性与融合,2008:153-156
|
CSCD被引
1
次
|
|
|
|
16.
Deutsch C V.
GSLIB Geostatistical Software Library and User's Guide,1998:369
|
CSCD被引
1
次
|
|
|
|
17.
Goovaerts P.
Geostatistics for Natural Resources Evaluation,1997:512
|
CSCD被引
1
次
|
|
|
|
18.
张仁铎.
空间变异理论及应用,2005:105-129
|
CSCD被引
1
次
|
|
|
|
19.
Zanon S D J.
Advanced Aspects of Sequential Gaussian Simulation,2004:1-8
|
CSCD被引
1
次
|
|
|
|
20.
Luo X C.
Spatiotemporal Stochastic Models for Earth Science and Engineering Applications,1998:54-65
|
CSCD被引
2
次
|
|
|
|
|