帮助 关于我们

返回检索结果

一种[001]取向镍基单晶高温合金蠕变特征
Creep characteristics of a Ni base single crystal superalloy along [001] direction

查看参考文献12篇

水丽 1 *   胡壮麒 2  
文摘 研究了一种[001]取向镍基单晶合金的蠕变特征和变形期间的微观组织结构.结果表明:在低温高应力和高温低应力条件下,合金具有较长的蠕变寿命和较低的稳态蠕变速率;在700℃, 720MPa条件下,透射电镜(TEM)观察显示蠕变期间的变形特征是12<110>位错在基体中运动,发生反应形成13<112>超肖克利(Shockley)不全位错,切入γ′相后产生层错.在 900℃, 450MPa条件下,没有出现蠕变初始阶段,γ′相从立方体形态演化成筏形;在加速蠕变阶段,多系滑移开动,大量位错剪切γ′相是变形的主要机制.在1070℃, 150MPa条件下,γ′相逐渐转变成筏形组织,并在γ/γ′界面处形成致密的六边形位错网,位错网可以阻止位错切入γ′相,提高蠕变抗力;在蠕变后期,位错以位错对形式切入γ′相,是合金变形的主要方式
其他语种文摘 An investigation was conducted on the creep behavior and microstructure of a Ni base single crystal superalloy with [001] orientation during creep deformation. The results show that the test samples exhibited a lower steady creep rate and a longer creep life under the higher temperature and stress level. Under the condition of 700 ℃ and 720 MPa TEM observations indicate that 1/2 < 110 > dislocations move in the matrix and react to form the Shockley segments of 1/2 < 112 > dislocations, which cut into the y' phase and form stacking faults in the precipitates. Under the condition of 900 ℃ and 450 MPa, the primary creep stage does not appear. The morphological evaluation of the y' phase develops from original cubic to raft microstructure. Multiple slip operates and dislocations shearing the y' phase is the main deformation mechanism during the creep acceleration stage. Under the condition of 1 070 ℃ and 150 MPa, it is found that the y' phase gradually changes into raft microstructure, hexagonal dislocation networks appear on the y/y' interface, and the regular and dense dislocation networks can inhibit dislocations cutting into the y' phase and enhance the creep resistance. In the later creep stage, the main deformation characteristic is that the y' phase is sheared by dislocation pairs
来源 北京科技大学学报 ,2010,32(11):1459-1463,1488 【核心库】
关键词 高温合金 ; 镍合金 ; 单晶体 ; 蠕变 ; 位错
地址

1. 沈阳理工大学机械工程学院, 沈阳, 110168  

2. 中国科学院金属研究所, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 1001-053X
学科 金属学与金属工艺
文献收藏号 CSCD:4042502

参考文献 共 12 共1页

1.  MacLachlan D W. A damage mechanics approach to stress rupture and creep of single crystal blade alloys. Proceedings of the 7th International Conference on Creep and Fracture of Engineering Materials and Structures. California,1997:707 CSCD被引 1    
2.  Sherry A H. The creep fracture of a single crystal superalloy. Mater Sci Eng A,1993,172(1/2):51 CSCD被引 4    
3.  Blavette D. An atom-probe study of some finescale microstructural features in Ni-based single crystal superalloys. Superalloys 1988. Champion, USA,1988:305 CSCD被引 1    
4.  Muller L. Modelling thermal misfit stresses in nickel-base superalloy containing high volume fraction of y' phase. Acta Metall Mater,1992,40(6):1321 CSCD被引 33    
5.  Caron P. Improvement of creep strength in a nickel-base single crystal superalloy by heat treatment. Mater Sci Eng A,1983,61(2):173 CSCD被引 52    
6.  Caron P. On the effects of heat treatment on the creep behaviour of a single crystal superalloy. Scripta Metall,1986,20(6):875 CSCD被引 20    
7.  Drew G L. Single crystal superalloys: the transition from primary to secondary creep//Superalloys 2004. Warrendale,2004:127 CSCD被引 1    
8.  Lukas P. Fatigue notch sensitivity of ultrafine-grained copper. Mater Sci Eng A,2005,391(1/2):337 CSCD被引 1    
9.  Wright P K. High cycle fatigue in a single crystal superalloy: time dependence at elevated temperature. Superalloys 2004. Warrendale,2004:657 CSCD被引 1    
10.  Seo S M. Low cycle fatigue and fracture behavior of Ni-base superalloy CM247LC at 760 ℃. Mater Sci Forum,2004,449(11):561 CSCD被引 1    
11.  Hopgood A A. The creep behaviour of a nickel-base single crystal superalloy. Mater Sci Eng A,1986,82:27 CSCD被引 24    
12.  水丽. [011]取向镍基单晶合金高温蠕变期间γ'相定向粗化行为研究. 稀有金属材料与工程,2009,38(5):826 CSCD被引 3    
引证文献 2

1 于兴福 无铼二代镍基单晶高温合金中温高应力蠕变机制 中国有色金属学报,2012,22(7):1921-1928
CSCD被引 5

2 于兴福 一种无铼二代镍基单晶高温合金蠕变机制研究 稀有金属材料与工程,2012,41(12):2185-2190
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号