文摘
|
针对增强现实中的三维注册问题,提出一种基于机器学习的图像自然特征点识别方法.基于高斯混合模型进行样本选择,利用模式识别中的分类方法替代特征向量的最近邻匹配,将计算负担从实时阶段转移到训练阶段,利用各匹配点对之间的相似度计算核密度估计的权值,实现相关平面目标的跟踪.实验结果表明,该方法实时性好、相机位姿估计精确,对光照、遮挡、透视等变化具有较强的鲁棒性 |
其他语种文摘
|
A natural feature recognition method based on machine learning is proposed for 3D registration in augmented reality application. This method increases the accuracy of key-points recognition and moves the computational burden from runtime matching to offline training by substituting specific classification for nearest-neighbor searching. Robust camera tracking and pose estimation can be obtained by the similarity of these matched key-points and the homography matrix. Experimental results demonstrate that this method is suitable for real-time application and is stable against illumination change, occlusion and perspective effect |
来源
|
计算机工程
,2010,36(20):182-184,190 【核心库】
|
关键词
|
机器学习
;
自然特征
;
增强现实
;
三维注册
|
地址
|
上海大学计算机工程与科学学院, 上海, 200072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3428 |
学科
|
自动化技术、计算机技术 |
基金
|
国家科技支撑计划项目
;
上海市重点学科建设项目
|
文献收藏号
|
CSCD:4035524
|
|
1.
Zhou F. Trends in Augmented Reality Tracking, Interaction and Display: A Review of Ten Years of ISMAR.
Proc, of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality,2008
|
CSCD被引
1
次
|
|
|
|
2.
Lowe D G. Distinctive Image Features from Scale-invariant Keypoints.
Proc.ofIJCV,2004,60(2):91-110
|
CSCD被引
1
次
|
|
|
|
3.
张连怡. 基于SIFT的三视图像特征匹配算法.
计算机工程,2008,34(13):177-179
|
CSCD被引
10
次
|
|
|
|
4.
Lepetit V. Point Matching as a Classification Problem for Fast and Robust Object Pose Estimation.
Proc.of Conference on Computer Vision and Pattern Recognition,2004
|
CSCD被引
1
次
|
|
|
|
5.
Ozuysal M. Fast Keypoint Recognition Using Random Ferns.
IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,24(7):971-987
|
CSCD被引
2
次
|
|
|
|
6.
Bay H. SURF: Speeded Up Robust Features.
Proc.of ECCW06,2006
|
CSCD被引
1
次
|
|
|