超临界压力下航空煤油圆管流动和传热的数值研究
Numerical study of convective heat transfer of aviation kerosene flows in pipe at supercritical pressure
查看参考文献21篇
文摘
|
对超临界压力下大庆RP-3航空煤油在小管道内的流动、传热过程进行了数值研究. 湍流模拟采用了 RNG k-ε两方程模型和Wolfstein一方程模型结合的两层模型;同时, 采用煤油的10组分替代模型以及NIST Supertrapp程序库对大庆3号航空煤油的热物理和输运特性进行了确定. 圆管传热的计算条件为:入口压力4 MPa, 入口温度300 K, 质量流量范围:0.06~0.12 kg/s, 壁面热流密度范围:300~700 kW/m~2. 计算结果显示, 煤油的流动和传热特性比水、二氧化碳等简单化合物复杂得多. 在超临界压力下, 煤油的吸热升温导致其热物理特性以及流动特性均发生剧烈变化, 其中, 雷诺数沿管道方向上升了至少一个量级, 而普朗特数下降了一个量级. 在加热开始段, 煤油的对流传热系数迅速上升;当壁面温度超过其拟临界温度后, 对流传热系数略有所回落;随着煤油温度的进一步上升, 传热系数又得到明显增强. 计算表明, 煤油对流换热特性的变化与煤油复杂的高温热物理特性以及湍流流动在近壁区的增强和抑止有关 |
其他语种文摘
|
Flow and heat transfer characteristics of China No.3 aviation kerosene in a heated tube and under supercritical pressure were investigated numerically.A two-layer turbulent model, consisting of RNG k-εmodel and Wolfstein one-equation model, was used for the simulation of turbulence.A 10-species kerosene surrogate model and NIST Supertrapp software were applied to obtain thermophysical and transport properties of the Daqing No.3 kerosene at varied temperature.Flow conditions of the current study were listed as following:the inlet pressure was 4 MPa;the inlet temperature was 300 K;the mass flows were set from 0.06 to 0.12 kg/s;the wall heat flux was varied from 300 to 700 kW/m2.Results showed that the kerosene thermophysical and flow properties change significantly as the fuel temperature increases along the tube length, of which Reynolds number increases by at least one magnitude and Prandtl number decreases by one magnitude.The heat transfer coefficient increases at the beginning section of the tube, then it decreases slightly as the wall temperature approaches the pseudo-critical temperature, and after that, the heat transfer coefficient rises again, indicating heat transfer enhancement.The current study indicated that the variation in the heat transfer properties can attribute to the complicated thermophysical characteristics of the supercritical kerosene and the change in the turbulence intensity in the near wall region |
来源
|
推进技术
,2010,31(4):467-472 【核心库】
|
关键词
|
超临界态~+
;
煤油
;
传热
;
数值计算
|
地址
|
1.
中国科学院工程热物理研究所, 北京, 100190
2.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4055 |
学科
|
航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:3968460
|
参考文献 共
21
共2页
|
1.
胡志宏. 超临界压力下煤油传热特性试验研究.
西安交通大学学报,1999,33(9)
|
CSCD被引
2
次
|
|
|
|
2.
Yang J. Numerical investigation of heat transfer in upward flows of supercritical water in circular tubes and tight fuel rod bundles.
Nuclear Engineering and Design,2007,237(4):420-430
|
CSCD被引
31
次
|
|
|
|
3.
Bazargan M. Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube.
Journal of Heat Transfer,2005,127:897-902
|
CSCD被引
13
次
|
|
|
|
4.
Yamagata K. Forced convective heat transfer to supercritical water flowing in tubes.
International Journal of Heat Mass Transfer,1972,15(12):2575-2593
|
CSCD被引
71
次
|
|
|
|
5.
Pioro I L. Experimental heat transfer in supercritical carbon dioxide flowing inside channels(survey).
Nuclear Engineering and Design,2005,235(8):913-924
|
CSCD被引
2
次
|
|
|
|
6.
Huai X L. An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions.
Chemical Engineering Science,2005,60(12)
|
CSCD被引
1
次
|
|
|
|
7.
符全军. 吸热型碳氢燃料研究进展.
火箭推进,2005,31(5):32-36
|
CSCD被引
7
次
|
|
|
|
8.
蒋劲. 超燃冲压发动机再生冷却热结构设计的计算工具.
实验流体力学,2006,30(3)
|
CSCD被引
1
次
|
|
|
|
9.
Fan X J. Combustion and ignition of thermal cracked kerosene in supersonic model combustors.
Journal of Propulsion and Power,2007,23(2):317-324
|
CSCD被引
25
次
|
|
|
|
10.
Dittus F W. Heat transfer in automobile radiators of the tubular type.
International Communications in Heat and Mass Transfer,1985,12(1):3-22
|
CSCD被引
98
次
|
|
|
|
11.
Sieder E N. Heat transfer and pressure drop of liquid in tubes.
Industrial&Engineering Chemistry,1936,28(2):1429-1436
|
CSCD被引
53
次
|
|
|
|
12.
Linne D L.
Evaluation of heat transfer and thermal stability of supercritical JP-7 Fuel.AIAA 97-3041
|
CSCD被引
3
次
|
|
|
|
13.
郑力铭. 超燃冲压发动机二维热环境数值模拟.
航空动力学报,2007,22(5):823-828
|
CSCD被引
5
次
|
|
|
|
14.
Zhong F Q.
Heat transfer of aviation kerosene at supercritical conditions.AIAA 2008 -4615
|
CSCD被引
1
次
|
|
|
|
15.
Yakhot V. Renormalization group analysis of turbulence: I.basic theory.
Journal of Scientific Computing,1986,1(1):1-51
|
CSCD被引
523
次
|
|
|
|
16.
Wolfstein M. The Velocity and temperature distribution of one-dimensional flow with turbulence augmentation and pressure gradient.
International Journal of Heat and Mass Transfer,1969,12(2):301-318
|
CSCD被引
38
次
|
|
|
|
17.
Ely J F.
NIST standard reference database 4-NIST thermophysical properties of hydrocarbon mixtures,1990
|
CSCD被引
10
次
|
|
|
|
18.
范学军. 大庆RP-3航空煤油热物性分析.
Journal of propulsion Technology,2006,27(2):187-192
|
CSCD被引
77
次
|
|
|
|
19.
孙青梅. 吸热型碳氢燃料RP-3仿JP-7临界性质(tc、Pc)的测定.
燃料化学学报,2006,34(4):466-470
|
CSCD被引
23
次
|
|
|
|
20.
Roelofs F.
CFD analyses of heat transfer to supercritical water flowing vertically upward in a tube.NRG, 21353/04.60811/P
|
CSCD被引
1
次
|
|
|
|
|