非扩张映像不动点新的简单逼近算法
NEW SIMPLE APPROXIMATION ALGORITHM OF FIXED POINT FOR NONEXPANSIVE MAPPINGS
查看参考文献21篇
文摘
|
提出了一个简单的非扩张映像不动点的逼近算法,该算法通过非迭代的逼近序列来实现.从算法的复杂性来看,提出的算法比经典的Mann迭代算法、Ishikawa迭代算法和Halpern迭代算法更简单.提出的算法紧密联系着非扩张映像不动点的存在性,因此,还得到了非扩张映像的新不动点定理,拓展和改进了经典的Goebel-Kirk,Kim-Xu等作者的结果 |
其他语种文摘
|
The purpose of this article is to establish new simple approximative algorithms of fixed point for nonexpansive mappings and to prove new fixed point theorems for nonexpansive mappings in the reflexive Banach spaces. The approximate algorithms presented in this article are simpler than Mann, Ishikawa and Halpern iterative algorithms. The weak and strong convergence theorems are proved respectively. The new fixed point theorems presented here improve and extend the related results of Goebel-Kirk,Kim-Xu and others in some respects |
来源
|
系统科学与数学
,2010,30(5):659-664 【核心库】
|
关键词
|
非扩张映像
;
逼近算法
;
不动点
;
弱收敛
|
地址
|
天津工业大学理学院数学系, 天津, 300160
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0577 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:3940772
|
参考文献 共
21
共2页
|
1.
Goebel K. A fixed point theorem for asymptotically nonexpansive mappings.
Proc. Amer. Math. Soc,1972,35:171-174
|
CSCD被引
129
次
|
|
|
|
2.
Kim T. Remarks on asymptotically nonexpansive mappings.
Nonlinear Anal,2000,41:405-415
|
CSCD被引
1
次
|
|
|
|
3.
Takahashi W.
Nonlinear Functional Analysis, Fixed Point Theory and Applications,2000
|
CSCD被引
1
次
|
|
|
|
4.
Mann W. Mean value methods in iteration.
Proc. Amer. Math. Soc,1953,4:506-510
|
CSCD被引
1
次
|
|
|
|
5.
Ishikawa S. Fixed point by new iteration method.
Proc. Amer. Math. Soc,1974,44:147-150
|
CSCD被引
60
次
|
|
|
|
6.
Halpern B. Fixed points of nonexpansive maps.
Bull. Amer. Math. Soc,1976,73:957-961
|
CSCD被引
2
次
|
|
|
|
7.
Zhou H. Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractions in Banach spaces.
Nonlinear Analysis,2008,68:2977-2983
|
CSCD被引
3
次
|
|
|
|
8.
Xu H. An implicit iteration process for nonexpansive mappings.
Numer. Funct. Anal. Optimize,2001,22:767-773
|
CSCD被引
1
次
|
|
|
|
9.
Su Y. General iteration algorithm and convergence rate optimal model for common fixed points of nonexpansive mapings.
Appl. Math. Comput,2007,186:271-278
|
CSCD被引
1
次
|
|
|
|
10.
Nakajo N. Strong convergence theorems for nonexpansive mappings and nonexpansive semi-groups.
J. Math. Anal. Appl,2003,297:372-379
|
CSCD被引
1
次
|
|
|
|
11.
Moudafi A. Viscosity approximation methods for fixed point problems.
J. Math. Anal. Appl,2000,241:46-55
|
CSCD被引
45
次
|
|
|
|
12.
Zhou H. Convergence of implicit iterative process for a finite family of asymptotically nonexpansive mappings in Banach spaces.
Numer. Funct. Anal. Optimize,2002,23:911-921
|
CSCD被引
1
次
|
|
|
|
13.
Noor M. Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings.
Appl. Math. Comput,2007,191:504-510
|
CSCD被引
1
次
|
|
|
|
14.
Reich S. Weak convergence theorem for nonexpansive mappings in Banach spaces.
J. Math. Anal. Appl,1979,67:274-276
|
CSCD被引
26
次
|
|
|
|
15.
Jung Im Kang. Convergence theorems of iteration sequences for nonexpansive mappings.
Commun. Korean. Math. Soc,2004,19:321-382
|
CSCD被引
2
次
|
|
|
|
16.
Osilike M O. Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps.
J. Math. Anal. Appl,2004,294:73-81
|
CSCD被引
23
次
|
|
|
|
17.
Chang S S. Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings.
Proc. Amer. Math. Soc,2001,129(3):845-853
|
CSCD被引
28
次
|
|
|
|
18.
Zeng L C. Strong convergence theorems of the modified Reich-takashi iteration method in Banach spaces.
Acta Mathematica Sinica(in Chinese),2005,48(3):417-426
|
CSCD被引
4
次
|
|
|
|
19.
Zeng L C. Modified ishikawa iteration process with errors in Banach spaces.
Acta Mathematica Sinica(in Chinese),2004,47(2):219-228
|
CSCD被引
3
次
|
|
|
|
20.
Chang S S. Convergence theorems for asymptotically nonexpansive mappings in Banach spaces.
Acta Mathematica Sinica(in Chinese),2003,46(4):665-762
|
CSCD被引
1
次
|
|
|
|
|