圆柱涡激振动的结构-尾流振子耦合模型研究
THE STUDY OF VORTEX-INDUCED VIBRATIONS BY COMPUTATION USING COUPLING MODEL OF STRUCTURE AND WAKE OSCILLATOR
查看参考文献14篇
文摘
|
建立了一个新的结构一尾流振子耦合模型, 流场近尾迹动力学特征被模化为非线性阻尼振子, 采用van der Pol方程描述.以控制体中结构与近尾迹流体间受力互为反作用关系来实现流固耦合, 采用该模型进行了二维结构涡激振动计算, 得到了合理的振幅随来流流速的变化规律和共振幅值, 并正确地预计了共振振幅值 A~*_(max) 随着质量阻尼参数(m~*+ C_A)ζ的变化规律, 给出了预测A*_(max) 值的拟合公式, 采用该模型计算了三维柔性结构在均匀来流和简谐波形来流作用下的VIV响应.结构在均匀来流作用下振动呈现由驻波向行波的变化过程, 并最后稳定为行波振动形态, 在简谐波形来流作用下, 结构呈现混合振动形态, 幅值随时间呈周期变化 |
其他语种文摘
|
A new model of coupling structure and wake oscillator in vortex-induced vibration (VIV) is established. It is based on force balance between structure and near wake flow. The nonlinear near wake vortex dynamics is modeled by a nonlinear oscillator satisfied the Van der pol equation. According to the study of 2-DVIV, the coupling model describes the features of response versus reduced velocity qualitatively and quantitatively. These results prove that the peak amplitude of structure A~(*)_(max) decreases as the mass-damping (m~* + C_A)ζ increases. An empirical formula on A~*_(max) versus (m~* + C_A)ζ iS obtained based on these results. The present 3-D coupling model is employed in the study of 3-D VIV of flexible slender cylinder. Dynamic response behavior of uniform flow presents a change from standing wave to traveling wave. Under non-uniform flow whose profile is sinusoidal, the structure vibration is a combination of standing and traveling waves along the span. These results are similar with those from direct numerical simulation (DNS), and some other previous results |
来源
|
力学学报
,2010,42(3):357-365 【核心库】
|
关键词
|
涡激振动
;
流固耦合
;
尾流振子模型
;
动力响应
;
数值计算
|
地址
|
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家863计划
;
中国科学院知识创新工程重要方向项目
|
文献收藏号
|
CSCD:3940518
|
参考文献 共
14
共1页
|
1.
Sarpkaya T. Vortex-induced oscillations.
ASME t, Appl,1979,46:241-258
|
CSCD被引
30
次
|
|
|
|
2.
Williamson CHK. Vortex-induced vibrations.
Annu Rev Fluid Mech,2004,36:413-455
|
CSCD被引
180
次
|
|
|
|
3.
邢景棠. 流固耦合力学概述.
力学进展,1997,27(1):19-38
|
CSCD被引
94
次
|
|
|
|
4.
Newman DJ. A direct numerical simulation syudy of flow past a freely vibrating cable.
J Fluid Mech,1997,344:95-136
|
CSCD被引
31
次
|
|
|
|
5.
张宇飞. 流向强迫振荡圆柱绕流的涡脱落模态分析.
力学学报,2007,39(3):408-416
|
CSCD被引
9
次
|
|
|
|
6.
陈文曲. 串列双圆柱绕流下游圆柱两自由度涡致振动研究.
力学学报,2004,36(6):732-738
|
CSCD被引
12
次
|
|
|
|
7.
Hartlen RT. Lift-oscillator model of vortex-induced vibration.
Journal of the Engineering Mechanics Division, ASCE,1970,96:577-591
|
CSCD被引
46
次
|
|
|
|
8.
Iwan WD. The vortex induced oscillation of elastic structure elements.
Journall of Engineering for Industry,1975,97:1378-1382
|
CSCD被引
3
次
|
|
|
|
9.
Krenk S. Energy balanced double oscillator model for vortex-induced vibrations.
Journal of Engineering Mechanics,1999,125:263-271
|
CSCD被引
8
次
|
|
|
|
10.
Facchinetti ML. Coupling of structure and wake oscillators in vortex-induced vibrations.
Journal of Fluids and Structures,2004,18:123-140
|
CSCD被引
129
次
|
|
|
|
11.
Govardhan R. Modes of vortex formation and frequency response of a freely vibrating cylinder.
Journal of Fluid Mechanics,2000,420:85-130
|
CSCD被引
90
次
|
|
|
|
12.
Mathelin L. Vortex-induced vibrations and waves under shear flow woth a wake oscillator model.
European, Journal of Mechanics B/Fluids,2005,24:478-490
|
CSCD被引
22
次
|
|
|
|
13.
Khalak A. Motions,forces and mode transitions in vortex-induced vibrations at low massdamping.
Journal of Fluids an.d Structures,1999,13:813-851
|
CSCD被引
113
次
|
|
|
|
14.
Violette R. Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments.
Computers and Structures,2007,85:1134-1141
|
CSCD被引
35
次
|
|
|
|
|