减压直流非转移电弧及等离子体射流波动特性研究
Fluctuations of Arc Voltage and Jet Flow in Non-Transferred DC Plasma at Reduced Pressure
查看参考文献13篇
文摘
|
实时测量了减压直流纯氩等离子体的弧电压和射流高温区的瞬时离子饱和电流. 结合射流高温区的瞬时形貌, 探讨了在真空室压力500~10000 Pa条件下电弧及等离子体射流的波动特性. 结果表明:当气流量较小和真空室压力较低时, 射流流场呈现较好的稳定性. 随着气流量和真空室压力增加, 弧电压出现高频脉动, 射流能量分布的空间和时间稳定性逐渐变差, 离子饱和电流信号变得紊乱;即使由于电源特性引起电弧功率300 Hz的波动幅度高达35%, 依然能够产生流场较稳定的等离子体射流;静电探针检测等离子体射流的瞬时离子饱和电流可作为了解射流波动特性的一种快速响应方法. |
其他语种文摘
|
The fluctuations of plasma jet, generated at a reduced pressure ranging from 500 Pa to 10000 Pa, were characterized by imaging the shape of the plasma jet with a high speed video camera and by profiling the real-time ion saturation current spectra with a double electrostatic probe. The variations in the arc voltage were experimentally evaluated by varying the plasma generation conditions, such as the gas flow rate and pressure. The results show that the plasma jet remains stable at a fairly small gas flow rate and a low pressure. As the gas flow rate and pressure increase, the high frequency voltage fluctuation intensifies, accompanied with deterioration of time and special stabilities of plasma jet energy, and with higher frequency perturbation in the ion current. A steady plasma jet can be easily maintained, in spite of a possible input power perturbation up to 35 % at 300 Hz. We suggest that the double electrostatic probe is capable of effectively characterizing the plasma jet. |
来源
|
真空科学与技术学报
,2010,30(4):367-373 【扩展库】
|
关键词
|
静电探针
;
等离子体稳定性
;
弧电压高频脉动
;
减压
|
地址
|
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-7126 |
学科
|
物理学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:3917196
|
参考文献 共
13
共1页
|
1.
Marcinauskas L. Synthesis of Carbon Coatings Employing a Plasma Torch from an Argon-Acetylene Gas Mixture at Reduced Pressure.
Vacuum,2007,81(10):1220-1223
|
CSCD被引
2
次
|
|
|
|
2.
Waggoner J W. Novel Low Power Reduced Pressure Inductively Coupled Plasma Ionization Source for Mass Spectrometric Detection of Organotin Species.
Journal of Analytical Atomic Spectrometry,1998,13(9):879-883
|
CSCD被引
1
次
|
|
|
|
3.
Dianov E M. Application of Reduced-Pressure Plasma CVD Technology to the Fabrication of Er-Doped Optical Fibers.
Optical Materials,1994,3(3):181-185
|
CSCD被引
1
次
|
|
|
|
4.
Wada T. New Developrient of Plasma Spraying Technology.
Journal of the Japan Welding Society,2006,75(8):622-626
|
CSCD被引
1
次
|
|
|
|
5.
Mcpherson R. Plasma Sprayed Ceramic Coatings.
Surface Engineering: Processes and Applications,1994
|
CSCD被引
1
次
|
|
|
|
6.
Planche M P. Study of Arc Fluctuations with Different Plasma Spray Torch Configurations.
Proceedings of the 13th International Symposium of Plasma Chemistry, Beijing,1997:1460-1465
|
CSCD被引
1
次
|
|
|
|
7.
Pfender E. Plasma Jet Behavior and Modeling Associated with the Plasma Spray Process.
Thin Solid Films,1994,238:228-241
|
CSCD被引
9
次
|
|
|
|
8.
Dussoubs B. DC Plasma Spraying:Effect of Arc Root Fluctuations on Particle Behavior in the Plasma Jet.
High Temperature Material Processes,1999,3(2/3):235-254
|
CSCD被引
1
次
|
|
|
|
9.
安连彤. 双阳极等离子喷枪电弧特性与热效率分析.
真空科学与技术学报,2007,27(2):109-112
|
CSCD被引
5
次
|
|
|
|
10.
Pan Wenxia. Arc Root Attachment on the Anode Surface of Arc Plasma Torch Observed with a Novel Method.
Chinese Physics Letters,2005,22(11):2895-2898
|
CSCD被引
12
次
|
|
|
|
11.
屠昕. 大气压直流双阳极等离子弧脉动特性研究.
中国电机工程学报,2006,26(20):113-117
|
CSCD被引
5
次
|
|
|
|
12.
Coudert J F. Influence of Helmholtz Oscillations on Arc Voltage Fluctuations in a DC Plasma Spraying Torch.
J Phys D:Appl Phys,2007,40:7357-7366
|
CSCD被引
4
次
|
|
|
|
13.
郭志颖.
热等离子体射流温度与速度测量的研究.硕士学位论文,2008
|
CSCD被引
1
次
|
|
|
|
|