MHD控制超声速边界层的理论研究和数值分析
PHYSICS AND NUMERICAL SIMULATIONS OF MHD ACCELETRATED SUPERSONIC BOUNDARY LAYER
查看参考文献14篇
文摘
|
对MHD(mechanisms of magnetohy drodynamics)控制超声速平板湍流边界层的机理进行了理论研究和数值模拟.理论上,采用等离子体低频近似碰撞频率模型,建立等离子体中电子和离子的力平衡方程,得到等离子体速度、极化电场以及边界层速度.数值上,通过空间HLLE格式、LU-SGS时间推进求解时均磁流体动力学湍流方程,其中湍流模型采用sst-kω双方程模型.研究结果表明:(1)边界层速度的理论结果和数值结果误差在7%范围内;(2)只有磁场而电场为零时,洛仑兹力起到减小摩阻的作用.施加电场后,洛仑兹力能够加速边界层低速区流体;(3)在边界层外层,越靠近壁面,作用参数越小;而在边界层近壁区黏性底层,虽然惯性力减小,但黏性力却迅速增加,因此越靠近壁面,作用参数反而越大,加速低速流的代价增加. |
其他语种文摘
|
The mechanism of magnetohydrodynamics(MHD) controlling on supersonic flat-plate turbulent boundary layer was explored in theory and numerical simulation.The collision frequencies between the electronmolecules and ion-molecules at the boundary layer were obtained by low frequency approximation in the plasma, and the force balances for electrons and ions were set up to solve the plasma velocities,polarization electric field and the boundary layer velocities.HLLE schemes and LU-SGS method were used to numerically solve the sst-kωturbulent model.The results show that,(1) the relative error between numerical results and theoretic results are in the range of 7%;(2) in the absence of electric field,the Lorentz force can decrease the skin friction. With an external electric field applied,the low velocity fluid in the boundary layer can be accelerated;(3) in the outer layer of boundary layer,the interaction parameter decreases with the distance to the wall,but in the inner layer as the viscous force dominates the flow,the interaction parameter increases with the distance to the wall. |
来源
|
力学学报
,2010,42(4):782-788 【核心库】
|
关键词
|
MHD流动控制
;
边界层加速
;
低频近似
;
超声速边界层
|
地址
|
中国科学院力学研究所, 中国科学院高温气体动力学重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
航空 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:3903561
|
参考文献 共
14
共1页
|
1.
Waltrup PJ. Structure of shock wave in cylindrical ducts.
AIAA J,1973,11(10):1404-1408
|
CSCD被引
50
次
|
|
|
|
2.
Masatoshi Kodera.
Mach 6 test of a SCRAM一et Engine with boundary layer bleeding and two-staged fuel injection. AIAA 2003-7049
|
CSCD被引
1
次
|
|
|
|
3.
Zaidi SH.
Snowplow surface discharge in magnetic field for high speed boundary layer control. AIAA 2006-1006
|
CSCD被引
2
次
|
|
|
|
4.
Kalra C.
Non-thermal control of shock-wave induced boundary layer separation using Magneto-hydrodynamics. AIAA 2007-4138
|
CSCD被引
2
次
|
|
|
|
5.
Kalra C.
Magnetically driven surface discharges for shock-wave induced boundary-layer separation control. AIAA 2007-222
|
CSCD被引
2
次
|
|
|
|
6.
Udagawa K.
MHD boundary layer flow acceleration experiments. AIAA 2006-3233
|
CSCD被引
1
次
|
|
|
|
7.
Saito S.
Boundary layer separation control饰MHD interaction. AIAA 2008-1091
|
CSCD被引
1
次
|
|
|
|
8.
Updike GA.
Hypersonic separated flow control using Magneto-aerodynamic interaction. AIAA 2005-164
|
CSCD被引
1
次
|
|
|
|
9.
苏纬仪. MHD控制激波诱导边界层分离的机理.
推进技术,2009,30(2):229-233
|
CSCD被引
5
次
|
|
|
|
10.
Macheret SO.
Physics of magnetically accelerated nonequilibrium surface discharges in high-speed flow. AIAA 2006-1005
|
CSCD被引
1
次
|
|
|
|
11.
钱善瑎(译).
电磁波在等离子体中的传播,1978
|
CSCD被引
5
次
|
|
|
|
12.
陈大伟. 超声速大攻角旋成体迎风激波数值模拟.
力学学报,2006,38(6):721-733
|
CSCD被引
5
次
|
|
|
|
13.
Jean-Francous Dietiker.
Numerical simulation of turbulent magnetohydrodynamic flows. [PhD Thesis],2001:221-223
|
CSCD被引
1
次
|
|
|
|
14.
Macheret SO. Magnetohydrodynamic and electrohydrodynamic control of hypersonic flows of weakly ionized plasmas.
AIAA J,2004,42(7):1378-1387
|
CSCD被引
13
次
|
|
|
|
|