浪都夕卡岩型铜矿床中石榴子石稀土元素地球化学研究
REE geochemistry of garnets from the Langdu skarn copper deposit
查看参考文献35篇
文摘
|
文中对浪都矿床夕卡岩中石榴子石进行了主量和稀土元素研究.分析结果表明研究区石榴子石为钙铁榴石-钙铝榴石固溶体系列,成分变化于Ad_(87)Gr_(13)-Ad_(92)Gr_8之间,以钙铁榴石为主.与世界上很多夕卡岩矿床中石榴子石REE配分模式截然不同,研究区石榴子石稀土元素总量较低、配分模式表现为轻稀土富集,重稀土亏损,并且具有明显的Eu正异常.研究显示,浪都矿床钙铁榴石是在水/岩比值较高的环境下快速形成,其与流体之间并没有完全达到REE平衡.岩浆热液中REE的配分模式、表面吸附可能为制约石榴子石REE含量及配分模式的主要因素.Eu~(2+)(r=1.25 (A))与其他REE~(3+)相比具有更大的离子半径,更容易被吸附在石榴子石晶体表面,可能是形成浪都矿床中石榴子石Eu正异常的主要原因. |
其他语种文摘
|
This study focuses on major and rare earth element compositions of garnets from the Langdu skarn copper deposit. Electron microprobe analyses show that the garnets from the Langdu deposit belong to grossular-andradite solid solution ranging in composition from Ad_(87)Gr_(13) to Ad_(92)Gr_8. The garnets from the Langdu deposit are characterized by much lower ∑REE content and LREE-enriched and HREE-depleted pattern, with a significantly positive Eu anomaly, which is obviously different from those of the majority of skarn deposits worldwide. The present study indicates that the andradites from the Langdu deposit grew rapidly and were not in complete equilibrium with the ore-forming fluids, indicative of high W/R ratios. Under such conditions the incorporation of REE in andradites was controlled by crystal kinetics (surface adsorption and occlusion) and the REE pattern of the magmatic fluid. Eu~(2+)(r=1.25 (A)) has a bigger ionic radius than the other REE~(3+), making it easier to be adsorbed by garnet crystals, which could have been the dominant control on the strongly positive Eu anomaly in garnets of the Langdu deposit. |
来源
|
地学前缘
,2010,17(2):348-358 【核心库】
|
关键词
|
夕卡岩型铜矿床
;
石榴子石
;
稀土元素
;
Eu正异常
;
浪都
;
中甸岛弧
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-2321 |
学科
|
地质学 |
基金
|
中国科学院知识创新工程重要方向项目
;
中国科学院“百人计划”项目
|
文献收藏号
|
CSCD:3856288
|
参考文献 共
35
共2页
|
1.
Vander Auwera J. Trace elements (REE) and isotopes (O,C,Sr) to characterize the metasomatic fluid sources:Evidence from the skarn deposit (Fe,W,Cu) of Traversella (Ivrea,Italy).
Contributions to Mineralogy and Petrology,1991,106(3):325-339
|
CSCD被引
9
次
|
|
|
|
2.
Nicolescu S. Secondary ion mass spectrometry analysis of rare earth elements in grandite garnet and other skarn related silicates.
EUROPEAN JOURNAL OF MINERALOGY,1998,10(2):251
|
CSCD被引
10
次
|
|
|
|
3.
Whitney P. Rare earth element metasomatism in hydrothermal systems:The Willsboro-Lewis wollastonite ores,New York,USA.
Geochimica et Cosmochimica Acta,1998,62(17):2965-2977
|
CSCD被引
1
次
|
|
|
|
4.
Smith M. The rare earth elements and uranium in garnets from the Beinn an Dubhaich aureole,Skye,Scotland,UK:Constraints on processes in a dynamic hydrothermal system.
Journal of Petrology,2004,45(3):457-484
|
CSCD被引
69
次
|
|
|
|
5.
Irving A. A review of experimental studies of crystal/liquid trace element partitioning.
Geochimica et Cosmochimica Acta,1978,42(6):743-770
|
CSCD被引
14
次
|
|
|
|
6.
Gaspar M. REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit.
Geochimica et Cosmochimica Acta,2008,72(1):185-205
|
CSCD被引
103
次
|
|
|
|
7.
Qi L. Determination of trace elements in granites by inductively coupled plasma mass spectrometry.
TALANTA,2000,51:507-513
|
CSCD被引
459
次
|
|
|
|
8.
Michard A. Rare earth element systematics in hydrothermal fluids.
Geochimica et Cosmochimica Acta,1989,53(3):745-750
|
CSCD被引
146
次
|
|
|
|
9.
Klinkhammer G. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges.
Geochimica et Cosmochimica Acta,1994,58(23):5105-5114
|
CSCD被引
1
次
|
|
|
|
10.
Wood S. The geochemistry of rare earth elements and yttrium in geothermal waters.
Special Publication-Society of Economic Geologists,2003,10:133-158
|
CSCD被引
1
次
|
|
|
|
11.
Reed M. The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800 ℃ and 200 MPa.
Contributions to Mineralogy and Petrology,2000,140(2):251-262
|
CSCD被引
1
次
|
|
|
|
12.
Mayanovic R. On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aqua and chloro complexes.
Chemical Geology,2007,239(3/4):266-283
|
CSCD被引
1
次
|
|
|
|
13.
Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits.
Economic Geology,1972,67(5):551-578
|
CSCD被引
511
次
|
|
|
|
14.
Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium.
Chemical Geology,1991,93(3/4):219-230
|
CSCD被引
247
次
|
|
|
|
15.
McIntire W. Trace element partition coefficients:A review of theory and applications to geology.
Geochimica et Cosmochimica Acta,1963,27(12):1209-1264
|
CSCD被引
33
次
|
|
|
|
16.
Moretti R. An appraisal of endmember energy and mixing properties of rare earth garnets.
Geochimica et Cosmochimica Acta,1998,62(7):1147-1173
|
CSCD被引
3
次
|
|
|
|
17.
Jamtveit B. Zonation patterns of skarn garnets:Records of hydrothermal system evolution.
GEOLOGY,1993,21(2):113-116
|
CSCD被引
71
次
|
|
|
|
18.
Jamtveit B. Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals.
SCIENCE,1994,263:505-508
|
CSCD被引
36
次
|
|
|
|
19.
Sverjensky D. Europium redox equilibria in aqueous solution.
Earth and Planetary Science Letters,1984,67:70-78
|
CSCD被引
198
次
|
|
|
|
20.
Kravchuk I. Experimental study of europium partitioning between silicic melt and fluid at 800 ℃ and 1.5 kbar.
GEOKHIMIYA,1989(12):1771-1781
|
CSCD被引
1
次
|
|
|
|
|