西藏尼木地区岗讲斑岩铜-钼矿床地质特征及锆石U-Pb年龄
A primary study of the geological characteristics and the zircon U-Pb age of the Gangjiang porphyry copper-molybdenum deposit in Nimu, Tibet
查看参考文献46篇
文摘
|
岗讲铜-钼矿床位于冈底斯中段尼木矿田之中,是近年新发现的一个储量在大型以上的典型斑岩型铜-钼矿床.含矿岩体为复式岩体,其中铜、钼矿化主要产于黑云石英二长岩、石英二长斑岩和流纹-英安斑岩之中.热液蚀变类型有钾化、硅化、绢英岩化、绿泥石化和局部泥化,从岩体中心向外主要发育钾化带和绢英岩化带.矿体主要分布在钾化带与绢英岩化带叠加部位,矿区次生氧化富集带也比较发育.文中利用二次离子探针质谱(SIMS)对主要含矿岩体进行了锆石U-Pb定年研究,获得黑云石英二长岩和流纹-英安斑岩的结晶年龄分别为(14.73±0.13) Ma(MSWD=1.3,N=16)和(12.01±0.29) Ma(MSWD=2.3,N=8),与尼木矿田其他斑岩铜(钼)矿床含矿斑岩体的形成年龄基本一致,表明岗讲铜-钼矿床形成于印度-欧亚大陆板块碰撞后的伸展阶段.鉴于矿区缺失青磐岩化带,且钾化带主体已出露地表,因此该区的剥蚀深度至少应该在2~3 km,这与结合青藏高原的剥蚀速率(0.13~0.23 mm/a)估算的剥蚀深度一致. |
其他语种文摘
|
Gangjiang copper-molybdenum deposit is located in the Nimu ore field in the middle section of the Gangdese porphyry copper belt. It is a typical porphyry-type deposit discovered in recent years, with more than half million tons of contained copper and molybdenum resources. The Gangjiang complex is composed of biotite quartz monzonite, quartz monzonite porphyry, rhyodacite and dacite. There are many types of hydrothermal alteration including patassic, silicific, phyllic, propylitic, chloritic and argillic alterations. There are obvious potassic and phyllic alteration zones from the central to the outward part of the complex. The copper and molybdenum mineralization occurs mainly in the overlapped part of the potassic and phyllic alteration zones. The supergene oxidation enrichment zone is developed in the top part of the ore bodies. In this paper, the zircon U-Pb dating method by secondary ion microprobe mass spectrometer (SIMS) is applied to study the intrusion ages of the main ore-bearing porphyries. The zircon U-Pb dating ages of the biotite quartz monzonite and rhyodacite are (14.73±0.13) Ma (MSWD=1.3, N=16), and (12.01±0.29) Ma (MSWD=2.3, N=8), respectively. They are in accordance with the ages of ore-bearing porphyry from other porphyry copper-molybdenum deposits in the Nimu ore field, so the Gangjiang porphyry copper-molybdenum deposit was formed in the extensional tectonic setting posterior to the collision between the Indian and Eurasian plates. On account of the missing of large propylitic alteration zone and the exposure of the main potassic zone, it is inferred that the depth of erosion in the Gangjiang area could be 2 - 3 km. This is similar to the estimation based on the published denudation rate (0.13 - 0.23 mm/a) of the Tibetan Plateau. |
来源
|
地学前缘
,2010,17(2):185-197 【核心库】
|
关键词
|
矿床地质
;
SIMS锆石U-Pb年龄
;
剥蚀程度
;
岗讲斑岩铜-钼矿床
;
尼木
;
西藏
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
2.
四川省冶金地质勘查院, 四川, 成都, 610051
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-2321 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
矿床地球化学国家重点实验室专项基金
|
文献收藏号
|
CSCD:3856276
|
参考文献 共
46
共3页
|
1.
Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits.
Economic Geology,1972,67(2):184-197
|
CSCD被引
161
次
|
|
|
|
2.
Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation.
Economic Geology,2003,98(8):1515-1533
|
CSCD被引
267
次
|
|
|
|
3.
Hou Z Q. Origin of adakitic intrusives generated during mid-Miocene east-west extension in Southern Tibet.
Earth and Planetary Science Letters,2004,220(1/2):139-155
|
CSCD被引
434
次
|
|
|
|
4.
Hou Z Q. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen.
Ore Geology Reviews,2009,36:25-51
|
CSCD被引
144
次
|
|
|
|
5.
Hou Z Q. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue.
Ore Geology Reviews,2009,36:2-24
|
CSCD被引
146
次
|
|
|
|
6.
Li X H. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization.
Geochemistry,Geophysics,Geosystems
|
CSCD被引
1
次
|
|
|
|
7.
Li X H. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range,South China:In situ zircon Hf-O isotopic constraints.
Science in China. Series D, Earth Sciences (in English),2009,52(9):1262-1278
|
CSCD被引
85
次
|
|
|
|
8.
Black L P. Improved ~(206)Pb/U microprobe geochronology by the monitoring of a trace-element-related matrix effect:SHRIMP,ID-TIMS,ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards.
Chemical Geology,2004,205:115-140
|
CSCD被引
161
次
|
|
|
|
9.
Wiedenbeck M. Three natural zircon standards for U-Th-Pb,Lu-Hf,trace element and REE analyses.
Geostandards Newsletter,1995,19(1):1-23
|
CSCD被引
736
次
|
|
|
|
10.
Ireland T R. Considerations in zircon geochronology by SIMS.
Reviews in Mineralogy and Geochemistry,2003,53(1):215-241
|
CSCD被引
41
次
|
|
|
|
11.
Stacey J S. Approximation of terrestrial lead isotope evolution by a two-stage model.
Earth and Planetary Science Letters,1975,26(2):207-221
|
CSCD被引
454
次
|
|
|
|
12.
Ludwig K R. User's manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel.
Berkeley Geochronology Center Special Publication,2003,4:1-70
|
CSCD被引
126
次
|
|
|
|
13.
Hoskin P W O. The composition of zircon and igneous and metamorphic petrogenesis.
Reviews in Mineralogy and Geochemistry,2003,53(1):27-62
|
CSCD被引
817
次
|
|
|
|
14.
Hou Z Q. Re-Os age for molybdenites from the Gangdese porphyry copper belt on Tibetan Plateau:Implication for geodynamic setting and duration of the Cu mineralization.
Science in China:Series D(in Chinese),2003,33(7):509-516
|
CSCD被引
3
次
|
|
|
|
15.
Lowell J D. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits.
Economic Geology,1970,65(4):373-408
|
CSCD被引
164
次
|
|
|
|
16.
Corbett G J. Southwest Pacific Rim gold-copper systems:Structure,alteration,and mineralization.
Society of Economic Geologists,Special Publication,1998(6):1-237
|
CSCD被引
1
次
|
|
|
|
17.
Xu J F. Emplacement,uplift and exhumation histories of Tibetan porphyry Cu-Mo-Au deposits.
Geochimica et Cosmochimica Acta,2006,70(18):A713
|
CSCD被引
1
次
|
|
|
|
18.
侯增谦. 冈底斯斑岩铜矿成矿带有望成为西藏第二条"玉龙"铜矿带.
中国地质,2001,28(10):27-29
|
CSCD被引
105
次
|
|
|
|
19.
李光明. 西藏冈底斯成矿带矿产资源远景评价与展望.
成都理工大学学报:自然科学版,2004,31(1):22-27
|
CSCD被引
42
次
|
|
|
|
20.
曲晓明. 冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带-.
矿床地质,2001,20(4):355-366
|
CSCD被引
205
次
|
|
|
|
|