月海玄武岩与月球演化
Mare basalts and lunar evolution
查看参考文献32篇
文摘
|
月海玄武岩主要产于月球近边的盆地中,覆盖面积为月球表面的1%,其形成年龄多在39~31亿年之间,是各类月岩中最年轻的.与地球玄武岩相似,月海玄武岩由斜长石、辉石和橄榄石组成,但它们比地球玄武岩具有更低的Mg~#、Al_2O_3、K和Na含量,高的FeO含量(大于16%)和变化范围大的TiO2含量(小于1%到大于13%).根据TiO_2含量的变化,月海玄武岩分成高Ti(>6%),低Ti(1.5%<TiO_2<6%)以及极低Ti(<1.5%)三类.所有月海玄武岩都具有Eu负异常,并亏损挥发性元素和亲铁元素.月海玄武岩的同位素特征指示其至少为三个组分混合的产物:(1)高~(238)U/~(204)Pb、高~(87)Sr/~(86)Sr和负βnd组分,可能是岩浆海分异的残余岩浆即KREEP;(2)低~(238)U/~(204)Pb、低~(87)Sr/~(86)Sr和正ε_(Nd)组分,来源于原始月幔,其熔融产物为低Ti玄武岩;(3)中等~(87)Sr/~(86)Sr和ε_(Nd)组分,位于月幔的顶部,经历了岩浆海(洋)过程中形成的堆晶物质的再熔融,还可能受到了陨击事件的影响,其熔融产物是高Ti玄武岩.月海玄武岩的元素和同位素地球化学性质支持岩浆海的假说,其源区的形成与岩浆海的分异密切相关,并经历了三个阶段:(a)岩浆海阶段,通过岩浆海的结晶分异形成顶部为斜长岩月壳,中间为高Ti、富钛铁矿层,底部为巨厚的硅酸盐低Ti层的三层壳幔结构;(b)富钛铁矿堆晶岩(携带少量残余熔体)因密度大而下沉至下部的硅酸盐月幔(400 km以下);(c)月幔中这些不同源区的岩石发生减压熔融.早期由较浅的低熔点组分熔融形成低K高Ti玄武岩,之后形成来源较深的高Ti玄武岩和低Ti玄武岩. |
其他语种文摘
|
Mare basalts are mainly distributed in basins in the near-earth side, occupying <1% of the volume of the Moon. Most mare basahs were emplaced during 3.9- 3. 1 Ga, thus being young by lunar standards. Like basaltic rocks on Earth, mare basahs are composed of plagioclase, pyroxene and olivine. However, they are lower in Mg~#, Al_2O_3, Na and K, higher in FeO contents than the terrestrial basalts. TiO_2 contents in mare basalts are extremely varied, ranging from < 1% to > 13%. Based on the TiO_2 variation, mare basahs are classified into three groups, i.e., high Ti (> 6% ), low Ti (1.5% < TiO_2 < 6% ) and extremely low Ti (< 1.5% ) basahs. All the mare basalts are characterized by negative Eu anomaly and are deficient in volatile and siderophile elements. Isotopic systematics of mare basalts indicate at least three components: ( 1 ) a component with high ~(238)U/~(204)pb, high ~(87)Sr/~(86)Sr and negative εNd values, likely represented by KREEP residuum of a global lunar magma ocean; (2) a "primordial" deep mantle source with ~(238)U/~(204)pb typical of Earth, low ~(87)Sr/~(86)Sr and positive ε_(Nd) values; and (3) a shallow mantle reservoir that has similar ~(238)U/~(204)pb values to the second, intermediate ε_(Nd) and low to intermediate ~(87)Sr/~(86)Sr values. The typical melting products of the second and third components are low-Ti and high-Ti basalts,respectively.
Elemental and isotopic characteristics of mare basalts are in support of the lunar magma ocean hypothesis and suggest a close relationship between their source formation and differentiation of magma ocean. The sources for the mare basalts were likely formed in a three-stage process. First, a global lunar magma ocean differentiated into a plagioclase-rich flotation crust, a thin high-Ti source and a thick low-Ti source consisting mostly of variable proportions of olivine and orthopyroxene with minor clinopyroxene. Second, the denser ilmenite-rich layer, probably
accompanied by variable amount of KREEP-type magma residuum, sank into the lower silicate layer over time below 400 km. Third, mare basalts are generated from these sources by decompression melting. Earliest melts (low K,high Ti basalts) were likely derived from the low-temperature components in the relatively shallow mantle. This was followed by both high-Ti and low-Ti basalts generated at greater depths. |
来源
|
地球化学
,2010,39(1):50-62 【核心库】
|
关键词
|
矿物学
;
地球化学
;
月海玄武岩
;
岩浆海
;
KREEP
;
月球演化
|
地址
|
中国科学院广州地球化学研究所, 中国科学院同位素年代学和地球化学重点实验室, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
天文学;地质学 |
基金
|
国家自然科学基金
;
中国科学院知识创新工程重要方向项目
|
文献收藏号
|
CSCD:3856255
|
参考文献 共
32
共2页
|
1.
欧阳自远.
月球科学概论,2005:1-362
|
CSCD被引
14
次
|
|
|
|
2.
Head J W. Lunar mare volcanism:Stratigraphy.eruption conditions,and the evolution of secondary erusts.
Geochimica et Cosmochimica Acta,1992,56(6):2155-2175
|
CSCD被引
21
次
|
|
|
|
3.
Kirk R L. The competition between thermal contraction and differentiation in the stress history of the Moon.
Journal of Geophysical Research B,1989,94(B9):12133-12144
|
CSCD被引
1
次
|
|
|
|
4.
Wilson B M.
Igneous Petrogenesis:A Global Tectonic Approach,1989:496
|
CSCD被引
1
次
|
|
|
|
5.
Warren P H. The Moon.
Treatise on Geochemistry,Volume 1.Meteorites,Comets,and Planets,2005:559-599
|
CSCD被引
1
次
|
|
|
|
6.
Le Bus M J. Report of the working party on the classification of the lunar igneous rocks.
Meteor Planet Sci,2001,36(9):1183-1188
|
CSCD被引
1
次
|
|
|
|
7.
Neal C R. Pctrogenesis of mare basalts:A record of lunar volcanism.
Geochimica et Cosmochimica Acta,1992,56(6):2177-2211
|
CSCD被引
35
次
|
|
|
|
8.
Papike J J. Mare basalts:Crystal chemistry,mineralogy,and petrology.
Bey Geophys Space Phys,1976,14(4):475-540
|
CSCD被引
1
次
|
|
|
|
9.
Norman M D. Crystallization age and impact resetting of ancient lunar crustal from the Descartes Terrane.
The Moon beyond 2002:Next steps in lunar science and exploration,2002:3028
|
CSCD被引
1
次
|
|
|
|
10.
Hiesinger H. Ages of mare basalts on the lunar nearside.
Journal of Geophysical Research,2000,105(12):29239-29275
|
CSCD被引
47
次
|
|
|
|
11.
Staid M l. Mineralogy of the last lunar basalts:Results from Clementine.
Journal of Geophysical Research E,2001,106(E11):27887-27900
|
CSCD被引
1
次
|
|
|
|
12.
Warren P H. The magma ocean concept and lunar evolution.
Annual Review of Earth and planetary Sciences,1985,13:201-240
|
CSCD被引
38
次
|
|
|
|
13.
Shearer C K. Is plagioclase removal responsible for the negative Eu anomaly in the source regions of mare basalts?.
Geochimica et Cosmochimica Acta,1989,53(12):3331-3336
|
CSCD被引
2
次
|
|
|
|
14.
Brophy J G. Europium anomalies in mare basalts as a consequence of marie cumulate fractionation from an initial lunar magma.
Proceedings of the Twentieth Lunar and Planetary Science Conference,1990:25-30
|
CSCD被引
1
次
|
|
|
|
15.
Warren P H. Siderophile trace elements in ALH84001,other SNC meteorites and eucrites:Evidence of heterogeneity,possibly time-linked,in the mantle of Mars.
METEORITICS,1996,31(1):97-105
|
CSCD被引
1
次
|
|
|
|
16.
Haskin L A. Chemistry.
A User's Guide to the Moon,1991:357-474
|
CSCD被引
1
次
|
|
|
|
17.
Lawrence D J. Small-aree thorium enhancements on the lunar surface.
Proceedings of the Thirty-third Lunar and Planetary Science Conference,2002:1970
|
CSCD被引
1
次
|
|
|
|
18.
Nyquist L E. The isotopic record of lunar volcanism.
Geochimica et Cosmochimica Acta,1992,56(6):2213-2234
|
CSCD被引
12
次
|
|
|
|
19.
Lugmair G W. The Sm-Nd history of KREEP.
Petrogenic Studies:The Moon and Meteorites,1978:689-704
|
CSCD被引
1
次
|
|
|
|
20.
Snyder G A. Chronology and isotopic constraints on lunar evolution.
Origin of the Earth and Moon,2000:361-395
|
CSCD被引
5
次
|
|
|
|
|