纳米晶材料变形行为的微观力学分析
MICROMECHANICS ANALYSIS FOR DEFORMATION BEHAVIOR OF NANOCRYSTALLINE MATERIALS
查看参考文献17篇
文摘
|
将纳米晶材料视为包括晶粒和晶界的两相复合材料.基于能量平衡概念推导出纳米晶材料的增量本构关系.最后将本文发展的模型用于纯铜的单轴拉伸实验,讨论了晶粒大小、形状和晶粒分布的影响,并将模型预测的结果和已有的实验结果进行比较. |
其他语种文摘
|
Nanocrystalline (NC) materials can be treated as composite materials consisting of two phases, i.e. grain domain and grain boundary. In this paper, the incremental stress-strain relation is derived from the view point of energy balance. As a result, the stress-strain relation of different grain sizes is obtained, and also applied to the case of pure copper under uniaxial tension. In addition, the effects of grain shape and statistical distribution of grain sizes on the stress-strain relation are discussed, and the results predicted by the present model are compared with experimental data. |
来源
|
固体力学学报
,2010,31(1):1-7 【核心库】
|
关键词
|
纳米晶材料
;
微观力学
;
应变能
;
纯铜
|
地址
|
1.
军事交通学院基础部, 天津, 300161
2.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-7805 |
学科
|
力学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:3830510
|
参考文献 共
17
共1页
|
1.
Schiotz J. Softening of nanocrystalline metals at very small grain sizes.
NATURE,1998,39:561-563
|
CSCD被引
100
次
|
|
|
|
2.
Schiotz J. A maximum in the strength of nanocrystalline copper.
SCIENCE,2003,301:1357-1359
|
CSCD被引
86
次
|
|
|
|
3.
Schiotz J. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals.
Physical Review B,1999,60:11971-11983
|
CSCD被引
25
次
|
|
|
|
4.
Van Swygenhoven H. Microscopic description of plasticity in computer generated metallic nanophase samples:a comparison between Cu and Ni.
Acta Materialia,1999,47:3117-3126
|
CSCD被引
5
次
|
|
|
|
5.
Van Swygenhoven H. Deformation in nanocrystalline metals.
MATERIALS TODAY,2006,9(5):24-31
|
CSCD被引
12
次
|
|
|
|
6.
Yamakov V. Grain-boundary diffusion creep in nanocrystalline palladium by molecular dynamics simulation.
Acta Materialia,2002,50:61-73
|
CSCD被引
16
次
|
|
|
|
7.
Yamakov V. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular dynamics simulation.
Acta Materialia,2001,49:2713-2722
|
CSCD被引
21
次
|
|
|
|
8.
Yamakov V. Relation between grain growth and grain-boundary diffusion in a pure material by molecular dynamics simulations.
Acta Materialia,2006,54:4053-4061
|
CSCD被引
1
次
|
|
|
|
9.
Tschopp M A. Grain boundary dislocation sources in nanocrystalline copper.
Scripta Materialia,2008,58:299-302
|
CSCD被引
7
次
|
|
|
|
10.
Rice J R. Inelastic constitutive relations for solids:an internal-variable theory and its application to metal plasticity.
Journal of the Mechanics and Physics of Solids,1971,19:433-455
|
CSCD被引
71
次
|
|
|
|
11.
Zirger Z.
Introduction to Thermomechanics(2nd),1983:42-80
|
CSCD被引
1
次
|
|
|
|
12.
Mura T.
Micromechanics of Defects in Solids,1982:1-201
|
CSCD被引
1
次
|
|
|
|
13.
Hill R.
The Mathematical Theory of Plasticity,1950:34-90
|
CSCD被引
1
次
|
|
|
|
14.
Kim H S. Plastic deformation behavior of fine-grained metals.
Acta Materialia,2000,48:493-504
|
CSCD被引
15
次
|
|
|
|
15.
Youssef K M. Ultratough nanocrystalline copper with a narrow grain size distribution.
Applied Physics Letters,2004,85:929-931
|
CSCD被引
4
次
|
|
|
|
16.
Sanders P G. Elastic and tensile behavior of nanocrystalline copper and palladium.
Acta Materialia,1997,45:4019-4025
|
CSCD被引
53
次
|
|
|
|
17.
Youssef K M. Ultrahigh strength and high ductility of bulk nanocrystalline copper.
Applied Physics Letters,2005,87:091904-091907
|
CSCD被引
17
次
|
|
|
|
|