浮区热毛细对流
THERMOCAPILLARY CONVECTION IN FLOATING ZONES
查看参考文献93篇
文摘
|
概述了浮区中平行于自由面的表面张力梯度驱动热毛细对流领域的研究.研究兴趣集中于振荡热毛细对流的起振,或者说从定常流动到振荡流动的转捩.起振依赖于一系列的临界参数,临界关系可以表示为这些临界参数的复杂函数.实验结果表明,振荡流中速度的变化和平均流动的速度有相同的量级,而其它量的变化,比如温度和自由面半径的波动,相比于它们的平均量而言则要小得多.因此,起振应是流体中动力学过程的结果,该问题是强非线性的.在过去几十年中,一些理论模型被引入米研究这个问题,使用的方法包括理论分析方法、线性不稳定性分析方法、能量稳定性分析方法以及非定常的三维直接数值模拟.其中直接数值模拟被认为是对强非线性过程进行深入分析的最适合方法,通常能得到和实验较符合的结果.从振荡热毛细对流向湍流的转捩提供了一个研究混沌行为的新系统,开创了一个非线性科学的新前沿,是一个集中了大量近期工作的研究热点.该文对浮区热毛细对流作了一个回顾,包括理论模型和分析,以及实验研究. |
其他语种文摘
|
This paper provides an overview of ongoing studies in the area of thermocapillary convection driven by a surface tension gradient parallel to the free surface in a floating zone, with emphases focused around the onset of oscillatory thennocapillary convection, also known as the transition from quasisteady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, and the margin relationship can be represented by a complex function of the critical parameters. The experimental results indicate that the velocity deviation of an oscillatory flow has the same order of magnitude as that of an average flow, and the deviations of other quantities, such as temperature and free surface radii fluctuations, are much smaller when compared with their normal counterparts. Therefore, the onset of oscillation should be a result of the dynamic process in a fluid, and the problem is a strongly nonlinear one. In the past few decades, several theoretical models have been introduced to tackle the problem using analytical methods, linear instability analysis methods, energy instability methods, and unsteady 3D numerical methods, the last of which is known to be the most suitable for a thorough analysis of strong nonlinear processes, resulting generally in a better agreement with the experimental results. The transition from oscillatory thermocapillary convection to turbulence falls under the studies of chaotic behavior in a new system, which opens a fascinating new frontier in nonlinear science, a hot research area drawing many recent works. This paper, with 93 references cited, reviews theoretical models and analyses as well as experimental studies on thennocapillary connection in floating zones. |
来源
|
力学进展
,2009,39(3):360-377 【核心库】
|
关键词
|
浮区
;
热毛细对流
;
转捩
;
稳定性
|
地址
|
中国科学院力学研究所, 中国科学院微重力重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0992 |
学科
|
力学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:3753013
|
参考文献 共
93
共5页
|
1.
Ostrach S. Low-grsvity fluid flow.
Annual Review of Fluid Mechanics,1982,14:313-345
|
CSCD被引
10
次
|
|
|
|
2.
Walter H U.
Space Fluid Science and Materials Science,1987
|
CSCD被引
1
次
|
|
|
|
3.
Ratke L.
Materials and Fluids under Low Gravity:Proceedings of the IX European Symposium on Gravity-Dependent Phenomena in Physical Sciences,1996
|
CSCD被引
1
次
|
|
|
|
4.
Jones L E.
Interface Instability,2002
|
CSCD被引
1
次
|
|
|
|
5.
Pearson J R A. On convection cells induced by surface tension.
Journal of Fluid Mechanics,1958,4:489-500
|
CSCD被引
32
次
|
|
|
|
6.
Xiong B. Crystal growth in floating zone with phase change and thermo-solutal convection.
Journal of Crystal Growth,1992,125:149-156
|
CSCD被引
2
次
|
|
|
|
7.
Chang C E. Inhomogeneities due to thermocapillary flow in floating zone melting.
Journal of Crystal Growth,1975,28:8-12
|
CSCD被引
9
次
|
|
|
|
8.
Chun Ch H. A micro-gravity simulation of the Marangoni convection.
Acta Astronautica,1978,5:681-686
|
CSCD被引
5
次
|
|
|
|
9.
Chun Ch H. Experiments on the transition from the steady to the oscillatory Marangoui-convection of a floating zone under reduced gravity effect.
Acta Astronautica,1979,6:1073-1082
|
CSCD被引
10
次
|
|
|
|
10.
Schwabe D. Experiments on surface tension driven flow in floating zone melting.
Journal of Crystal Growth,1978,43:305-312
|
CSCD被引
8
次
|
|
|
|
11.
Schwabe D. Some evidence for the existence and magnitude of a critical Marangoui number for the onset of oscillatory flow in crystal growth melts.
Journal of Crystal Growth,1979,46:125-131
|
CSCD被引
4
次
|
|
|
|
12.
Kuhlamann H C.
Thermpcapillary Convection in Model of Crystal Growth,1999
|
CSCD被引
1
次
|
|
|
|
13.
Hu W R.
Floating Zone Convection,2003
|
CSCD被引
1
次
|
|
|
|
14.
Levenstam M. Instabilities of thermocapillary convection in a half-zone at intermediate Prandtl numbers.
Physics of Fluids,2001,13:807-816
|
CSCD被引
2
次
|
|
|
|
15.
Preisser F. Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface.
Journal of Fluid Mechanics,1983,126:545-555
|
CSCD被引
5
次
|
|
|
|
16.
Hu W R. Influence of liquid bridge volume on the onset of oscillation in floating zone convection I.Experiment.
Journal of Crystal Growth,1994,142:379-386
|
CSCD被引
4
次
|
|
|
|
17.
Tang Z M. Hu W 1% Influence of liquid bridge volume on the onset of oscillation in floating zone convection ⅡNumerical Simulations.
J Crystal Growth,1994,142:385-391
|
CSCD被引
2
次
|
|
|
|
18.
Levenstam M. Hydrodynamical instabilities of thermocapillary flow in a half zone.
Journal of Fluid Mechanics,1995,297:357-372
|
CSCD被引
11
次
|
|
|
|
19.
Nakamura S. Observation of periodic Marangoni convection in a molten silicon bridge on board the TR-IA-6 rocket.
J Jpn Soc Microgravity Appl,1999,16:99-103
|
CSCD被引
1
次
|
|
|
|
20.
Chang Y K. The float-zone growth of Ti3Au and Ti3Pt.
J Crystal Growth,1983,62:627-632
|
CSCD被引
2
次
|
|
|
|
|