带主动冷却的超声速燃烧室传热分析
Heat transfer analysis for actively cooled supersonic combustor
查看参考文献13篇
文摘
|
介绍了流体、固体传热耦合的一维分析方法,对带主动冷却系统的马赫数2.5超声速燃烧室进行了传热分析.该分析以实验测量的燃烧室壁面静压以及超临界煤油换热特性数据为基础,考虑了燃气的高温离解效应,燃烧特性以及碳氢燃料的高温热物理特性,对不同燃烧状态、冷却条件下的主动冷却过程进行了分析.结果表明有燃烧时壁面热流可高达1 MW/m~2以上,是无燃烧时的2~3倍.当煤油流量较小时(当量比为0.45),冷却后的壁面温度仍偏高,而且冷却壁内温度分布不均匀.随着煤油流量的增加,冷却效果明显提高,冷却壁内温度分布趋于均匀;并且煤油的出口温度也显著减小. |
其他语种文摘
|
A method of one-dimensional heat transfer analysis,dealing with the coupling effect of the combustion flow,coolant flow and combustor wall,has been developed for the study of an regenerative fuel cooling system for Mach 2.5 supersonic combustor.The analysis includes the air dissociation effect at high temperature,combustion characteristics of kerosene and thermophysical properties of the supercritical kerosene.Based on the measured static pressure along the combustor wall and heat transfer characteristics of supercritical kerosene,the analysis is applied to investigate the cooling process and cooling effect at different combustion and cooling conditions.The analysis shows that the wall heat flux with combustion can exceed 1 MW/m~2,which is 2~3 times the value of that without combustion.Under cooling conditions with a relatively low coolant flow rate,high temperature regions and large temperature variations exist on the hot-side combustor wall.With increase in the coolant flow rate,the cooling effect is improved significantly and the fuel exit temperature decreases. |
来源
|
推进技术
,2009,30(5):513-517,532 【核心库】
|
关键词
|
超声速燃烧室
;
主动冷却
;
传热分析
;
超临界态
;
煤油替代模型
|
地址
|
中国科学院,力学研究所, 高温气体动力学重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4055 |
学科
|
航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:3710340
|
参考文献 共
13
共1页
|
1.
Bergholz R F.
Thermal management systems for high Mach airbreathing propulsion AIAA 92-0515
|
CSCD被引
1
次
|
|
|
|
2.
Sobel D R. Hydrocarbon fuel cooling technologies for advanced propulsion.
ASME Journal of Engineering for Gas Turbine and Power,1997,119(2)
|
CSCD被引
44
次
|
|
|
|
3.
Edwards T. Liquid fuels and propellants for aerospace propulsion 1903-2003.
JOURNAL OF PROPULSION AND POWER,2003,19(6)
|
CSCD被引
86
次
|
|
|
|
4.
范学军. 大庆RP-3航空煤油热物性分析.
推进技术,2006,27(2)
|
CSCD被引
7
次
|
|
|
|
5.
范学军. 超临界煤油超声速燃烧特性实验.
推进技术,2006(27):1
|
CSCD被引
1
次
|
|
|
|
6.
Fan X J. Investigation of vaporized kerosene injection and combustion in a supersonic model combustor.
JOURNAL OF PROPULSION AND POWER,2006,22(1)
|
CSCD被引
2
次
|
|
|
|
7.
Gordon S.
Computer Program for calculation of complex chemical equilibrium compositions and applications NASA 1994-1311
|
CSCD被引
1
次
|
|
|
|
8.
Ely J F.
NIST standard reference database 4-NIST thermophysical properties of hydrocarbon mixtures,1990
|
CSCD被引
10
次
|
|
|
|
9.
Yu G. Experimental investigation of flameholding mechanism and combustion performance in hydrogen-fueled supersonic combustors.
Combustion Science and Technology,2002,174(10)
|
CSCD被引
1
次
|
|
|
|
10.
俞刚. 超声速模型燃烧室中气化煤油喷注研究.
推进技术,2005,26(2)
|
CSCD被引
1
次
|
|
|
|
11.
Heiser W H.
Hypersonic airbreathing propulsion,1994
|
CSCD被引
91
次
|
|
|
|
12.
Eckert E R G.
Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary layer flow over surfaces with constant pressure and temperature,1956
|
CSCD被引
2
次
|
|
|
|
13.
Zhong F Q.
Heat transfer of aviation kerosene at supereritical conditions AIAA 2008-4615
|
CSCD被引
1
次
|
|
|
|
|