氧碘化学激光器超声速段射流工作方式性能的数值研究
Numerical study on performance of COIL with supersonic jet in supersonic section
查看参考文献9篇
文摘
|
氧碘化学激光器(COIL)的混合喷管内发生的是气体动力学、化学反应动力学以及光学等相互耦合的复杂过程,每个过程都对COIL性能有着至关重要的影响.利用3维计算流体动力学技术,通过求解层流Navier-Stokes方程与组分输运方程对简化的氧碘化学激光RADICL模型进行数值模拟与分析,结合10种组分和21个基元反应的化学反应模型,对COIL超声速段射流情况下喷管内的流动及混合情况,尤其是产率、分解率、泵浦率和小信号增益系数的细致3维空间分布进行研究.结果证明超声速段进行射流有利于提高COIL的性能表现,可以充分利用高增益区,光腔位置增益可以达到0.012 cm~(-1),与亚声速段射流相比总压恢复性能提高,混合有待加强. |
其他语种文摘
|
There are strong interactions or couplings among multi-fields in the mixing nozzle of the chemical oxygen-iodine laser(COIL),such as gas-dynamics,chemical reaction kinetics and optics.In this paper,three-dimensional computational flow dynamic technology was applied on the research assessment device improvement chemical laser model by solving the laminar Navier-Stokes equations and transportation equations to study iodine molecule dissociation rate,iodine atom pumping rate,singlet oxygen yield rate and small signal gain distributions.The simulation was done in the condition of that the secondary flow jet would take place in the supersonic section of the nozzle.The detailed flow field and distribution of yield,dissociation and pumping rates were investigated.The distribution characteristic of small signal gain,variation of total pressure recovery and mixing efficiency were described.It is found that the COIL with the secondary flow jet in the supersonic section would show some improved performance.The gain at the position of mirror could achieve 0.012 cm~(-1).The coefficient of total pressure recovery would be increased.The mixing process between supersonic flows plays an important role here and should be investigated deeply. |
来源
|
强激光与粒子束
,2009,21(9):1305-1309 【核心库】
|
关键词
|
氧碘化学激光
;
超声速段射流
;
增益系数
;
混合效率
;
总压恢复
|
地址
|
1.
中国航天空气动力技术研究院, 北京, 100074
2.
国立庆尚大学,机械航空工程学系, 韩国, 660701
3.
中国科学院力学研究所, 高温气体动力学重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4322 |
学科
|
力学 |
基金
|
国家863计划
;
中国科学院大连化学物理研究所基金
|
文献收藏号
|
CSCD:3670017
|
参考文献 共
9
共1页
|
1.
Yang Bailing. Latest advances in COIL at Dalian.
Proc of SPIE,1998:281-289
|
CSCD被引
1
次
|
|
|
|
2.
李守先. 氧碘化学激光器中混合现象的数值模拟.
强激光与粒子束,1999,11(5):535-537
|
CSCD被引
6
次
|
|
|
|
3.
袁先旭. 化学氧碘激光(COIL)三维混合反应流场数值模拟研究.
空气动力学学报,2006,24(4):444-449
|
CSCD被引
5
次
|
|
|
|
4.
胡宗民. COIL亚声速段横向喷流混合流场数值分析.
强激光与粒子束,2005,17(4):481-484
|
CSCD被引
4
次
|
|
|
|
5.
吕俊明. 亚声速段横向射流对Coil性能影响的数值研究.
计算物理,2008,25(4):414-420
|
CSCD被引
3
次
|
|
|
|
6.
吕俊明. COIL基于小信号增益系数的最佳流量配比选择.
强激光与粒子束,2008,20(10):1593-1596
|
CSCD被引
3
次
|
|
|
|
7.
Madden T J. Aspects of 3-D chemical oxygen-iodine laser simulation.
Proc of SPIE,2003:363-375
|
CSCD被引
2
次
|
|
|
|
8.
Paschkewtiz J.
An assessment of COIL physical property and chemical kinetic modeling methodologies[AIAA Paper 2000-2574],2000
|
CSCD被引
2
次
|
|
|
|
9.
Jiang Zonglin. Dispersion conditions for non-oscillatory shock capturing schemes and its applications.
Computational Fluid Dynamics Journal,1995,4:137-150
|
CSCD被引
27
次
|
|
|
|
|