微模式化基底上大鼠骨髓间充质干细胞的增殖、分化和迁移
Proliferation, differentiation, and migration of rat bone marrow mesenchymal stem cells on micropatterned substrate
查看参考文献14篇
文摘
|
目的 利用微模式化基底研究基底几何微结构对骨髓间充质干细胞增殖、分化及迁移过程的影响.方法 设计制作微模式化基底,用以控制细胞的铺展形态和面积.比较不同模式控制下大鼠骨髓间充质干细胞的增殖、分化和迁移数据.结果 细胞铺展宽度狭小可抑制骨髓间充质干细胞的增殖,细胞铺展形状可以调节其向成骨细胞分化的进程,细胞铺展面积受限时迁移增强,其增殖迁移行为减弱与成骨细胞诱导因子地塞米松的作用有关.结论 细胞铺展的几何形状和面积是骨髓间充质干细胞增殖、分化及迁移过程中的重要调节因子. |
其他语种文摘
|
Objective To quantify the micro-geometric and configuration of micropatterned substrate and analyze its effects on proliferation,differentiation,and migration of bone marrow mesenchymal stem cells(BM MSCs).Method Micropatterned substrates were designed and fabricated to control cells' spreading shape and area. Data of proliferation, differentiation and migration of rat BM MSCs on various patterned substrates were compared.Result Proliferation of BM MSCs was inhibited when their spreading width was narrowed. Osteoblastic differentiation was regulated distinctively in different spreading shape and area. Cell migration was more active when their spreading area was reduced. Dexamethasone was found to play an important role in down-regulating cell proliferation and migration on patterned substrate.Conclusions Cell spreading shape and area is important factors for regulating proliferation, differentiation, and migration of BM MSCs. |
来源
|
医用生物力学
,2009,24(4):256-262 【扩展库】
|
关键词
|
微模式化基底
;
间充质干细胞
;
增殖
;
分化
;
迁移
|
地址
|
中国科学院力学研究所,国家微重力实验室/生物力学与生物工程中心, 国家微重力实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-7220 |
学科
|
基础医学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:3665876
|
参考文献 共
14
共1页
|
1.
Mooney D. Switching from differentiation to growth in hepatocytes:control byextracellular matrix.
Journal of Cellular Physiology,1992,151:497-505
|
CSCD被引
5
次
|
|
|
|
2.
Chen CS. Geometric control of cell lifo and death.
Sci,1997,276:1425-1428
|
CSCD被引
87
次
|
|
|
|
3.
Adam JE. Discher matrixelasticity directs stem cell lineage specification.
CELL,2006,126:677-689
|
CSCD被引
2
次
|
|
|
|
4.
Bhatia SN. Wicrofibrication of hepatocyte/fibroblast co-culture:role of homotypic cell interactions.
Biotecnology Progress,1998,14:378-387
|
CSCD被引
2
次
|
|
|
|
5.
Hanein D. Cell adhesion to crystal surfaces:A model for initial stages in the attachment of cells to solid substrates.
Cells and Materials,1995,5:197-210
|
CSCD被引
1
次
|
|
|
|
6.
Raghavan S. Micropattemed environments in cell biology.
Advanced Materials,2004,16:1303-1313
|
CSCD被引
2
次
|
|
|
|
7.
Nath N. Surface engineering strategies for control of protein and cell interactions.
Surface Science,2004,570:98-110
|
CSCD被引
7
次
|
|
|
|
8.
Zhang Z. Pretreatment of amphiphilic comb polymer surfaces dramatically affects protein adsorption.
Biomacromolecules,2005,6:3388-3396
|
CSCD被引
1
次
|
|
|
|
9.
曹娟. 低剂量微丝解聚剂对地塞米松诱导的牛小梁细胞骨架及基质蛋白TSP-1的影响.
眼科研究,2007,25(7):502-505
|
CSCD被引
1
次
|
|
|
|
10.
Koukoudtaki SB. Dexamethasone induces rapid actin assembly in human endometrial cells without affecting its synthesis.
Journal of Cellular Biochemistry,1997,65:492-500
|
CSCD被引
1
次
|
|
|
|
11.
Alhadlaq A. Mesenchymal stem cells:isolation and therapeutics.
Stem Cells Dev,2005,13:436-448
|
CSCD被引
1
次
|
|
|
|
12.
McBeath R. Cell Shape,cytoskeletal tension,and rhoa regulate stem cell lineage commitment.
Develop Cell,2004,6:483-495
|
CSCD被引
89
次
|
|
|
|
13.
Olson EN. Interplay between proliferation and differentialion within the myogenic lineage.
DEVELOPMENTAL BIOLOGY,1992,154:261-272
|
CSCD被引
8
次
|
|
|
|
14.
Huang S. The structural and mechanical complexity of cell growth control.
Nature Cell Biology,1999,1(5):E131-E138
|
CSCD被引
10
次
|
|
|
|
|