不同型式搅拌桨对黄原胶水溶液搅拌效果的CFD数值模拟
Numerical Simulation on Fluid Flow of Xanthan Gum Solution Stirred by Different Types of Impeller
查看参考文献20篇
文摘
|
使用FLUEN~(R)软件对黄原胶溶液在搅拌槽内的流动特征、桨叶搅拌效果和功率消耗进行了数值模拟.计算采用多重参考系方法和标准k-ε湍流方程.黄原胶浓度为0~2.0%(ω),桨型为直叶圆盘涡轮、非对称抛物线圆盘涡轮和四斜叶桨.结果表明,不同桨型下溶液的粘度分布有较大差异,且搅拌效率随溶液浓度增加急剧下降,转速增加能有限提高搅拌效率.径流桨和轴流桨产生的功率消耗随溶液浓度改变呈相反的变化趋势.在黄原胶浓度2.0%(ω)、搅拌转速7.5 r/s时,所有桨型下有效搅拌体积所占比例均低于60%:与在水中相比,直叶圆盘涡轮的功率消耗降低约7%,而四斜叶桨的功率消耗增加29%. |
其他语种文摘
|
The flow characteristics of a typical pseudoplastic fluid,xanthan gum solution,stirred by three different types of impeller in vessels were investigated.FLUENT~(R) software,combined with standard k-εturbulent equations and multiple reference frame method,was employed to solve the problems numerically.The flow pattern,cavern volume,viscosity distribution,and power consumption of various concentrations of xanthan solution were obtained.Concentration of xanthan solution ranged from 0 to 2.0%(ω),and impeller rotation speeds were 5 and 7.5 r/s,respectively.A remarkable effect of shear thinning was observed near the installation position,and there were significant differences of the distribution of liquid viscosity for each impeller.The impeller efficiency declined drastically with xanthan concentration,and increase of impeller speed barely improved impeller efficiency.When the xanthan concentration increased,power consumption generated by different flow patterns showed adverse results.When xanthan concentration was 2.0%(ω) and rotation speed 7.5 r/s,the cavern volumes of all the operations were less than 60% of total vessel volume.Power consumption in the vessel with a Rushton turbine was dropped by 7%,while increased by about 29% with a Pitched blade turbine. |
来源
|
过程工程学报
,2009,9(4):634-640 【核心库】
|
关键词
|
多重参考系
;
黄原胶
;
流型
;
粘度
;
功率消耗
|
地址
|
1.
江南大学生物工程学院, 工业生物技术教育部重点实验室, 江苏, 无锡, 214122
2.
中国科学院中青岛生物能源与过程研究所, 山东, 青岛, 266071
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1009-606X |
学科
|
力学;化学工业 |
基金
|
国家973计划
;
国家863计划
;
江南大学工业生物技术教育部重点实验室基金
|
文献收藏号
|
CSCD:3659303
|
参考文献 共
20
共1页
|
1.
王英琛(译).
流体混合技术,1991:193-219
|
CSCD被引
1
次
|
|
|
|
2.
Delaplace G. An Analytical Model for the Prediction of Power Consumption for Shear-thinning Fluids with Helical Ribbon and Helical Screw Ribbon Impellers.
Chemical engineering science,2006,61(10):3250-3259
|
CSCD被引
4
次
|
|
|
|
3.
Szalai E S. Mixing Analysis in a Tank Stirred with Ekato Intermig~(R) Impellers.
Chem.Eng.Sci,2004,59(18):3793-3805
|
CSCD被引
11
次
|
|
|
|
4.
Knoch A. Influence of Non-Newtonian Flow Behavior on Mixing Process Characteristics.
Chemical Engineering & Technology,1999,22(2):112-118
|
CSCD被引
3
次
|
|
|
|
5.
Mavros P. Flow Visualization in Stirred Vessels:A Review of Experimental Techniques.
Chemical Engineering Research and Design,2001,79(2):113-127
|
CSCD被引
7
次
|
|
|
|
6.
Sommerfeld M. State of the Art and Future Trends in CFD Simulation of Stirred Vessel Hydrodynamics.
Chemical Engineering & Technology,2004,27(3):215-224
|
CSCD被引
10
次
|
|
|
|
7.
Pakzad L. Using Computational Fluid Dynamics Modeling to Study the Mixing of Pseudoplastic Fluids with a Scaba 6SRGT Impeller.
Chemical Engineering Progress,2008,47:2218-2227
|
CSCD被引
1
次
|
|
|
|
8.
Diaz A. Scale-up Strategy for Bioreactors with Newtonian and Non-Newtonian Broths.
BIOPROCESS ENGINEERING,1999,21:21-23
|
CSCD被引
1
次
|
|
|
|
9.
Norton T. Computational Fluid Dynamics (CFD):An Effective and Efficient Design and Analysis Tool for the Food Industry:A Review.
Trends in Food Science and Technology,2006,17:600-620
|
CSCD被引
12
次
|
|
|
|
10.
Chapple D. The Effect of Impeller and Tank Geometry on Power Number for a Pitched Blade Turbine.
Chemical Engineering Research and Design,2002,80(4):364-372
|
CSCD被引
3
次
|
|
|
|
11.
Yapici K. Numerical Investigation of the Effect of the Rushton Type Turbine Design Factors on Agitated Tank Flow Characteristic.
Chemical Engineering Progress,2008,47:1340-1349
|
CSCD被引
1
次
|
|
|
|
12.
Amanullah A. Agitator Speed and Dissolved Oxygen Effects in Xanthan Fermentations.
Biotechnology and Bioengineering,1998,57(2):198-210
|
CSCD被引
5
次
|
|
|
|
13.
GarcoAa-Ochoa F. Xanthan Gum:Production,Recovery,and Properties.
Biotechnology Advances,2000,18:549-579
|
CSCD被引
36
次
|
|
|
|
14.
Aubin J. Modeling Turbulent Flow in Stirred Tanks with CFD:The Influence of the Modeling Approach,Turbulence Model and Numerical Scheme.
EXPERIMENTAL THERMAL AND FLUID SCIENCE,2004,28:431-445
|
CSCD被引
21
次
|
|
|
|
15.
张国娟.
搅拌槽内混合过程的数值模拟,2004:30-35
|
CSCD被引
1
次
|
|
|
|
16.
Hockey R M. Turbulent Flow in a Baffled Vessel Sitrred by a 60° Pitched Blade Impeller.
Chemical engineering science,1996,51(19):4405-4421
|
CSCD被引
3
次
|
|
|
|
17.
Amanullala A. A New Mathematical Model to Predict Cavern Diameters in Highly Shear Thinning,Power Law Liquids Using Axial Flow Impellers.
Chemical engineering science,1998,53(3):455-469
|
CSCD被引
1
次
|
|
|
|
18.
汪越胜(译).
材料力学,2006:149-155
|
CSCD被引
2
次
|
|
|
|
19.
Vlaev S D. Pressure Distribution at Impeller Blades of Some Radial Flow Impellers in Sacchrose and Xanthan Gum Solutions:A CFD Visualization Approach.
FOOD AND BIOPRODUCTS PROCESSING,2004,82(C1):13-20
|
CSCD被引
2
次
|
|
|
|
20.
Nienow A W. Gas-Liquid Mixing Studies:A Comparison of Rushton Turbines with Some Modem Impellers.
Chemical Engineering Research and Design,1996,74(A):417-423
|
CSCD被引
5
次
|
|
|
|
|