固体火箭发动机喷管气固两相流动的数值模拟
Numerical simulation of gas-particle flow in nozzle of solid rocket motor
查看参考文献16篇
文摘
|
对颗粒相采用颗粒轨道模型,气相求解可压缩N-S方程组,计算方法采用显式Runge-Kutta时间推进法与有总变差衰减(TVD)性质的高精度MUSCL-Roe格式;自主开发了曲线坐标系下二维轴对称可压缩N-S方程组的解算器Solve2D,研究了固体火箭发动机喷管中颗粒相对流场的影响以及不同尺寸颗粒运动规律.结果表明:颗粒相对流场的影响主要表现在喷管喉部以及扩张段,和单相流场相比,沿轴线马赫数减小,且颗粒尺寸越小减少得越多;沿轴线气相温度升高,且颗粒尺寸越小温度升高越多;颗粒尺寸越小,无粒子区越小;颗粒越大与收缩段壁面碰撞越剧烈,无粒子区越大. |
其他语种文摘
|
In order to study the influences of particles on gas flow in nozzle of solid rock-et motor and the rules of particles flowing at different sizes, an Eulerian-Lagrangian ap-proach was employed, Particle trajectory model was used for particle phase and compressible N-S equations were solved. MUSCL-Roe total variation diminishing (TVD) scheme with high order accuracy, and two-stage, time-stepping Runge-Kutta method with TVD character have been used to solve two-dimensional axis symmetric compressible N-S equations by a home codes "Solve2D". Simulation results indicate that the influence of particle primarily lies in throat and expansion segments of nozzle. Compared to pure gas flow, Mach numbers de-creased along centerline, and the reduction became larger with smaller size particle. The gas temperature increased in two-phase flow, and the enhancement became higher with smaller size particles. The region without particles was smaller with smaller size particles. Big size particles had serious collision with wall of convergent region, and the region without parti-cles was larger. |
来源
|
航空动力学报
,2009,24(4):931-937 【核心库】
|
关键词
|
火箭发动机
;
喷管
;
两相流
;
数值模拟
;
颗粒轨道模型
|
地址
|
1.
北京理工大学,宇航科学与技术学院, 北京, 100081
2.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-8055 |
学科
|
航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:3592956
|
参考文献 共
16
共1页
|
1.
方丁酉.
两相流动力学,1988
|
CSCD被引
33
次
|
|
|
|
2.
周力行.
湍流气粒两相流动和燃烧的理论与数值模拟,1994
|
CSCD被引
101
次
|
|
|
|
3.
Hwang C J. Numerical study of gas-particle flow in a solid rocket nozzle.
AIAA Journal,1988,26(6):682-689
|
CSCD被引
12
次
|
|
|
|
4.
Chang I S. Three-dimensional,two-phase,transonic,cant-ed nozzle flows.
AIAA Journal,1988,28(5):790-797
|
CSCD被引
2
次
|
|
|
|
5.
Ristor A.
Numerical simulation of ducted rocket motor[AIAA 2001-3193]
|
CSCD被引
1
次
|
|
|
|
6.
Sachdev J S. A parallel solution-adaptive scheme for multiphase core flows in solid propel-lant rocket motors.
International Journal of Computa-tional Fluid Dynamics,2005,19(2):159-177
|
CSCD被引
1
次
|
|
|
|
7.
候晓.
同体火箭喷管两相湍流的数值研究,1990
|
CSCD被引
1
次
|
|
|
|
8.
淡林鹏.
长尾喷管两相流动数值模拟及应用研究,2003
|
CSCD被引
2
次
|
|
|
|
9.
李江.
固体火箭发动机凝相颗粒运动规律研究,1998
|
CSCD被引
3
次
|
|
|
|
10.
李东霞. 火箭发动机气体-颗粒两相流双流体模型研究.
固体火箭技术,2005,28(4):238-243
|
CSCD被引
10
次
|
|
|
|
11.
曾卓雄. 可压稀相两相流场的数值模拟.
推进技术,2002,23(2):154-157
|
CSCD被引
8
次
|
|
|
|
12.
Cuff el R F. Transonic flow field in a supersonic nozzle with small throat radius of curvature.
AIAA Journal,1969,7(7):1364-1366
|
CSCD被引
1
次
|
|
|
|
13.
淡林鹏. 长尾喷管中粒子运动轨迹的数值模拟.
航空动力学报,2003,18(2):197-202
|
CSCD被引
5
次
|
|
|
|
14.
蒯超.
计算流体力学方法及应用,2006
|
CSCD被引
1
次
|
|
|
|
15.
Tabakoff W. Experimental method of deter-mining particle restitution coefficients.
Proc.Symp.On Polyphase Flow and Transport,ASME,Century 2-Engineering Technology Conferences,1980:203-210
|
CSCD被引
1
次
|
|
|
|
16.
Mehta R C. A fast algorithm to solve vis-cous two-phase flow in an axismmetric rocket nozzle.
International Journal for Numerical Methods in Fluids,1998,26:501-517
|
CSCD被引
5
次
|
|
|
|
|